On the refined ‘Birch—-Swinnerton-Dyer type’
conjectures of Mazur and Tate
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We prove a substantial part of conjectures of Mazur and Tate that refine the
conjecture of Birch and Swinnerton-Dyer. Our approach, which also leads to some
results even finer than the predictions of Mazur and Tate, is via the ‘rank-zero
component’ of the relevant case of the equivariant Tamagawa Number conjecture .

1. Introduction

1.1. Refined conjectures of ‘Birch—Swinnerton-Dyer type’

The conjectures of Birch and Swinnerton-Dyer, originating from [BSD65] and developed into
their final form by Tate in [Tat95], connect arithmetic invariants of an elliptic curve E defined
over @ with the order of vanishing and the leading term of its Hasse-Weil L-series at s = 1.
These arithmetic invariants include the rank, as an abelian group, of the group of Q-rational
points F(Q) of E and the cardinality of the, conjecturally finite, Tate-Shafarevich group I /q
of E. For a more detailed introduction, and further reading, the reader may for example consult
the survey articles [BST21b; Groll; SD67; Tat95; Wil06; Zhal4].

In the 1980s Mazur and Tate formulated refinements of this conjecture that relate a certain
group-ring-valued element H%T, which is constructed from modular symbols and interpolates
the values of twisted Hasse—Weil L-series, to Galois-equivariant invariants of the base change of
FE to an abelian number field K. In particular, the element G%T is expected to encode precise
information about the Galois module structure of E(K) and I,k

It is convenient to subdivide the predictions of Mazur and Tate into three separate statements
that we will refer to as as their ‘order of vanishing’, ‘weak main conjecture’, and ‘leading
term’ component. Each of these components has been very influential and has inspired a
range of similar conjectures in a variety of different contexts. This includes the analogue
for Heegner points formulated by Darmon [Dar92] and extended by Bertolini and Darmon
[BD94], conjectures in the setting of the multiplicative group such as the ‘integral Gross—Stark
conjecture’ (from [Gro88]) and its refinements and generalisations due to Tate [Tat04], Darmon
[Dar95], Sano [San14], and Mazur-Rubin [MR16], as well as an analogue for the Rankin—Selberg
convolution of two modular forms formulated by Cauchi and Lei [CL22]. Generalisations to
modular forms of higher weight have moreover been studied by Ota [Ota23], Kim [Kim23], and
Emerton-Pollack-Weston [EPW25]. Kurihara [Kur02, Conj. 0.3] has also formulated a ‘strong
main conjecture’ as a strengthening of the ‘weak main conjecture’ of Mazur and Tate, and
results towards this are due to Kurihara [Kur02], Pollack [Pol05], and Kim-Kurihara [KK21].
To describe the conjectures of Mazur and Tate in more detail, we set G = Gi = Gal(K/Q)
and let R be a ring with the property that R[G] contains 63 T. Work of Stevens [Ste89] shows
that one can often take R = Z in practice!, and a self-contained discussion of this integrality
question is given in Appendix A.

Write I ¢ for the augmentation ideal of R[G| and S(E/K) for the ‘integral Selmer group’
defined by Mazur and Tate in [MT87, §1.7]. If Il k is finite, then S(E/K) is a finitely
generated Z[G]-module with the property that, for every prime number p, the ‘p-component’

'Recent numerical computations of Llerena-Cérdova [LC24] suggest that one should however always choose R
big enough such that |E(K)tor| € R in order for the conjectures of Mazur and Tate to be valid.



S(E/K) ®z Z, identifies with the Pontryagin dual Selg)f gy of the classical p-primary Selmer
group Sel,, g/ which fits into the fundamental exact sequence (cf., for example, [Sil09, § X.4])

0 — (Wg/g[p>])" — Sel;)/,E/K — Homgz, (E(K) ®z Zy, Z,) — 0. (1)

We also write 7 := rkz(F(Q)) for the rank of F and sp(mg) for the number of primes dividing
the conductor mg of K at which F has split-multiplicative reduction.

(1.1) Conjecture (Mazur-Tate). The following claims are valid.
(a) (‘order of vanishing’, [MT87, Conj. 4]) 03T € I;;Ep(m’()
(b) (‘weak main conjecture’, [MT87, Conj. 3]) 03* € Fitt%[G](S(E/K) ®z R)

This conjecture holds for a fixed ring R if and only if its ‘p-part’, namely the conjecture for
R ®z Zp, holds for every prime number p. In this article, we will focus on the p-parts of
Conjecture (1.1) for prime numbers p that satisfy the following mild hypothesis, which, for
any given pair (F, K), is known to be valid for all but finitely many prime numbers p (see
Remarks (1.3) and (2.11) for more details). In the statement we write E for the reduction of
FE modulo p.

(1.2) Hypothesis. Assume p > 3 is a prime number with the following properties:

(i) The image of the Galois representation pg,: Gal(Q/Q) — Aut(T,E) = GL2(Z,) at-
tached to E contains SLy(Z,).

(ii) At least one of the following conditions is satisfied:

(a) K contains no primitive p-th root of unity.

(b) E has potentially good reduction at p and E(IF},) contains no point of order p.
(iii) If F has additive reduction at p, then p is unramified in K.

In particular, p is allowed to be an ‘anomalous’ prime (in the terminology used by Mazur
[Maz72]) if Hypothesis (1.2) (ii) (a) is valid.

(1.3) Remark. If E does not have CM, then Serre has proved in [Ser72] that pg , is surjective
for all but finitely many prime numbers p, and asked if in fact pg, is always surjective when
p > 37. It is conjectured that surjectivity is implied by p & {2,3,5,11,13,17,37} and the
following is known in this direction.
e Zywina has proved in [Zyw22, Thm. 1.10] that a prime that fails surjectivity is bounded
from above by max{37, N}, where N denotes the conductor of E.
o If F is a semi-stable elliptic curve and p > 11, then pg ), is surjective by a result of Mazur
[Maz78, Thm. 4].
e Zywina has proved in [Zyw22, Thm. 1.5] that if pg , is not surjective (with p > 13) and
{ # pis a prime at which F does not have potentially good reduction, then £ = +1
mod p and p divides the Tamagawa number Tam, at /.

To state our first main result, we set r), := rkZp(Selz,E/K) and write #: Z,[G] — Z,[G] for the

involution that sends ¢ € G to o~ 1.

(1.4) Theorem. Fiz an abelian number field K of conductor m. If the pair (K,p) satisfies
Hypothesis (1.2), then the following claims are valid.

(a) 03T € I%i—j—ép(mH%(p)(K) with the integer ¢P)(K) > 0 defined in Remark (1.5) (c) below.
MT, .
(b) 07 € Fitt], on(Sely ).
(1.5) Remark. (a) The adornment # in Theorem (1.4) (b) can often be removed. To ex-

plain this, we write D(m) = ged(m, N) and d(m) = ged(D(m), %) If 6(m) = 1,



which is automatically satisfied if F is semistable, then 91}(” satisfies a ‘functional equa-
tion’ (stated in Remark (2.5)) that implies that 63T and H%T’# only differ by a unit
in Z[G]. In this case, therefore, Theorem (1.4)(b) also shows that 63T belongs to

MT,#

FlttZ e (Selp B/ ). However, the ideals generated by OMT and 0, "" may not be equal if

d(m) > 1 and the authors would like to thank Juan-Pablo Llerena—Cérdova for providing
them with numerical examples where they are indeed different.

(b) The perhaps surprising appearance of the factor 2 in Theorem (1.4) (a) can be motivated
conceptually as follows. Write ord(H%T) for the largest non-negative integer n such that
oM belongs to I7 - By an observation of Mazur and Tate [MT87, (1.6.4)], the known
validity of the parity conjecture [DD10] then combines with the functional equation for
91}(“ to imply, if p is odd, that ord(H%T) =r, mod 2.

(c) To define the integer cP)(K) that appears in the statement of Theorem (1.4) (a), we set
ag =0+ 1—|E(IFy)| for every prime number ¢. We also define 15(¢) = 1if /{ N and
1x(¢) = 0 otherwise. We then let féf}){ /Q denote prime-to-p part of the residue degree of
¢in K/Q and define the set (see also Lemma (4.8) for an alternative characterisation)

CPN(K) = {£: 0% C(ar — 1n(0)C) mod p for all ¢ € Q,* with ¢/x/e = 1}
as well the subsets
CP(K) = {ttN :t#pteCP(K),ar=1,0]m,¢*m}
CP(m) = {€| N : 0 # p,ag = 0,02 | m}
as well as their cardinalities cép)(K) = ]C’ép)(K)] and c(()p) (m) = ]C’[()p) (m)|. Given this,
we may then define
V() = ) (K) + o (m).
To the knowledge of the authors, Theorem (1.4) (a) is the first general result that combines

the contributions from both the rank of Sel E/Q and the presence of trivial zeros. That a
refinement of Conjecture (1.1) (a) of this shape may hold was first suggested by Ota, who
proved in [Ota23, Thm. 1.1] that 6¥T € Imm{””p} if one assumes Hypothesis (1.2) (i) and
certain local conditions at p and at primes € that divide the conductors of K or E. If all
split-multiplicative primes ¢ d1v1d1ng m belong to C'(X )( K) and p is big enough, then this also

easily implies 6MT € I;’:(S;p( red’ (K) (cf. [Otal8, Cor. 6.3)).

Using entirely different methods, Bergunde and Gehrmann [BG17] have also proved that
belongs to I;g (CT) if K is a real abelian field (which settles Conjecture (1.1) (a) in this case, if
r=0).

As foz Conjecture (1.1) (b), the following results have previously been obtained assuming Hy-
pothesis (1.2) (i) and a slight strengthening of (1.2) (ii) (b), where p is also assumed to be of
good reduction for F.

MT
9K

e If one also assumes the vanishing of a relevant p-invariant and that p does not divide
the product of Tamagawa numbers Tam(E) := [, x(E(Qe) : Eo(Qy)), then Kurihara
has proved that the image of O}' in Z,[Gk] belongs to the annihilator of a relevant
Selmer group for every finite abelian p-extension K/Q of conductor m coprime to pN
(see [Kurl4, Rk. 1.2.6]) and to Fitt) [G](Sel /i) if E has good ordinary reduction at
p, the prime p is tamely ramified in K and suitable additional assumptions are satisfied
(see [Kur03, Thm. 10.]).

e Results of Kataoka (see [Kat21, Thm. 1.8] and [Kat22, Thm. 1.6]) combine to imply the
p-part of the ‘weak main conjecture’ [MT87, Conj. 3] holds if E has good reduction at
every ¢ | pm and one assumes certain further local conditions such as the vanishing of

H°(Q(Cmp=) ®q Qu, E[p>]) for every £ | pm.



If K is a subfield of the cyclotomic Z,-extension of Q, then the result of Theorem (1.4) (b) has
previously been proved by Emerton—Pollack—Weston [EPW25]. (We note that the main result
of loc. cit. also involves the involution #.)

To state the leading term conjecture of Mazur and Tate, we denote the Tate multiplicative
period of E at a prime ¢ of split-multiplicative reduction by ¢g, € Q/, and write Tam, =
ord(gg,) for the Tamagawa number of E at £. We also fix an abelian number field L with

Galois group G = Gal(L/Q), write D(Le) C @y, for the decomposition group at ¢, and let
recs: Q) — D(LZ) C G, denote the associated local reciprocity map.

(1.6) Conjecture (‘leading term’, [MT87, Conj. 6]). Suppose the conductor m’ of L is a
product of primes at which E has split-multiplicative reduction. Then one has

- -~ sp(m’)+1
op =05 - Ham/ (Tam; ™ - (rece(gpe) — 1)) mod I

The approach of Mazur and Tate is directly motivated by the earlier ‘p-adic Birch—Swinnerton-
Dyer conjecture’ of Mazur—Tate-Teitelbaum (from [MTT86]) and by experimental evidence (see
[MT87, § 3.2] and, more recently, the articles of Portillo-Bobadilla [PB19] and Llerena-Cérdova
[LC24]). Indeed, if m' = ¢™ for some split-multiplicative prime ¢, then the ‘/-part’ (so R = Zy)
of Conjecture (1.6) is a special case of the Mazur-Tate-Teitelbaum conjecture and therefore
follows from the result of Greenberg and Stevens [GS93] if £ > 5 (see also [Kob06]). Note that,
due to its Iwasawa-theoretic nature, this approach only sees the ‘/-part’ of Conjecture (1.6)
(hence concerns the component on which ¢ is wildly ramified) and so misses much of the finer
aspects of these congruences. The only theoretical evidence in an /-tamely ramified setting (still
assuming m’ = (™) that has hitherto been available in the literature is the result of de Shalit
in [Sha95] that applies to elliptic curves of prime conductor ¢ and is proved via an extension
of the strategy of Greenberg and Stevens (see also recent work of Lecouturier [Lec23] in this
direction).

For a natural number m we let F},, denote the m-th cyclotomic field and write M1 = 9%/[; We
also let Sp(m) denote the set of prime numbers dividing m at which F has split-multiplicative
reduction.

Our second main result is a refinement of Conjecture (1.6) and reads as follows.

(1.7) Theorem. Let L be an abelian number field of conductor m’ and fiz a prime number p
such that the pair (L, p) satisfies Hypothesis (1.2). Let K be a subfield of L and take S" C Sp(m/)
to be a subset of primes which split completely in K. Set M" == m/ [[,cq €~ orde(m”) " and suppose
that all primes £ dividing M’ satisfy ¢ € C(Xp) (L).
Then 03T belongs to A = ([Tjeg I, ®)Zp|GL] and one has
L,

oMt = WFM,/K(O}\T/[;,) : HéeS’ (Tam, " - (rece(gpe) — 1)) mod Iz, p2A

with H == Gal(L/K) and Fyp := Q(Cyr) the M'-th cyclotomic field.

(1.8) Remark. (a) Using the ‘norm relations’ in Proposition (2.4), one can explicitly com-
pute the element 7p, ,/x (0}/{5) that appears in Theorem (1.4) (c) as a linear combination

of the elements M1 with F ranging over a suitable set of subfields of K. If the conductor
m of K and M’'/m are coprime, then one may in fact take this set to be simply {K}.

(b) If E(Q) has positive rank r > 0, then the result of Theorem (1.7) is trivial (by The-

orem (1.4) (a)). In any such case, Mazur and Tate predict in [MT87, Conj. 4] a finer

congruence for 63 modulo I;;gp(m)ﬂ. If r =1 and sp(m) = 0, results towards this

conjecture have recently been obtained by Burns, Kurihara, and Sano in [BKS25]. We
expect that their approach can be combined with ours in order to prove the ‘p-part’ of

IT+Sp(m)+1
Zyp,G

the full congruence modulo , for primes p as in Theorem (1.4), up to a unit

in Z,; if the Birch-Swinnerton-Dyer conjecture holds for E and without ambiguity if



E validates the ‘generalised Perrin-Riou conjecture’ from [BKS25]. In the generality of
Hypothesis (1.2), a result of this kind would require an extension of the comparison of
height pairings carried out by Burns and Macias Castillo in [BMC24, Thm. 10.3].

To end the discussion of our main results, we summarise some of the consequences towards
the ‘p-parts’ of the conjectures of Mazur and Tate (that is, the statements of the conjectures
after extending scalars from R to R ®yz Z,) in their original formulations from [MT87] in
the following corollary. This result is obtained by taking K to be the maximal real subfield
F;} of the m-th cyclotomic field F,,, in Theorem (1.4) (and taking note of Remark (1.5) (a)),
and K = Q and L = Fnt, with m’ a product of split-multiplicative primes in Theorem (1.7).
Note that, in these cases, condition (ii) (a) in Hypothesis (1.2) is always satisfied and, if E is
a semistable non-CM elliptic curve, then Hypothesis (1.2) (i) is satisfied by Remark (1.3) and
Hypothesis (1.2) is empty.

(1.9) Corollary. If p > 11 is a prime number and E is a semistable elliptic curve without
CM, then the following claims are valid.

(a) The ‘p-part’ of the ‘order-of-vanishing component’ of [MT87, Conj. 4], and hence also
the ‘weak vanishing conjecture’ [MT87, Conj. 1], holds.

(b) The ‘p-part’ of the ‘weak main conjecture’ [MTS87, Conj. 3] holds.
(c) The ‘p-part’ of the ‘leading term conjecture’ [MT87, Conj. 6] holds.

1.2. Overview of proof strategy

The approach we adopt in this article is motivated by the ‘Tamagawa Number Conjecture’
of Bloch and Kato [BK90], which, when specialised appropriately, is well-known to recover
the Birch-Swinnerton-Dyer conjecture (see [Kinll; Ven07; BF24] for details). Since the
Mazur—Tate conjectures are themselves an equivariant refinement of the conjecture of Birch—
Swinnerton-Dyer, it is natural to view them within the framework of the equivariant refinement
of the Tamagawa Number Conjecture. This refinement, formulated independently by Fontaine—
Perrin-Riou [FPR94| and Kato [Kat93] in the commutative setting and later generalised to
motives with non-commutative coefficients by Burns and Flach [BF01], is commonly referred to
as the ‘equivariant Tamagawa Number Conjecture’ (eTNC). While results in [BMC24; BKS25]
suggest there should exist a link between the eTNC and the Mazur—Tate conjectures, the full
nature of this connection has hitherto remained unclear.

In this article, we establish a precise link between the relevant case of the eINC and the con-
jectures of Mazur and Tate that sheds new light onto their relationship. With ‘one inclusion’ in
the eTNC at a prime satisfying Hypothesis (1.2) recently proved in work of Burns and the first
author [BB25] via an enhancement of the general theory of Euler systems and Kato’s Euler
system (from [Kat04]), this new connection leads directly to Theorems (1.4) and (1.7).

To explain this strategy in a little more detail, we write zKato = (zKato) o for the col-
lection of cohomology classes constructed by Kato in [Kat04] (and adapted to our needs in
Theorem (2.8)). Here each class 253 belongs to H'(Op,,[1/Nmp], T,E) and is linked to the
values of the twisted Hasse—Weil L-series at s = 1 via Kato’s explicit reciprocity law. This
reciprocity law can be reformulated (cf. Theorem (2.10)) in such a way that there is a suitable
local cohomology class Q. in @U|p HY(F,,, VpE) with the property that

er (2:117(133507 Qm) — H%IT

Here Py, (+,) is induced by the cup product pairing on €
precise definition).

The local class @, has been given a very explicit description by Otsuki in [Ots09] (by building
on earlier work of Kurihara [Kur02]) that, amongst other things, enables us to control the de-
nominators of @, under condition (1.2) (ii). More precisely, we use Honda theory to construct

olp H' (Fino; Vp ) (see §2.2 for a



a suitable analogue of the ‘Artin—Hasse exponential’ and show that Q),, can be decomposed
as the value of this exponential times the inverses of the relevant Euler factors Euly(6y), and
certain elements V,(,f) of Z,|Gr,). The elements Vy(,f) each encode the contribution of a prime
¢ # p towards Otsuki’s construction and are amenable to explicit calculations. In the case of
a split-multiplicative prime ¢, they are also given a cohomological interpretation in §5 in the

following way. For big enough m, one can define a canonical map
-1
9 Dety (g, (@WRF(FW, Z,(1))" = QplGil

such that V%)Eulg((}g)_l belongs to the image of this map. This approach is very much in the
spirit of the eTNC since its relevant component implies that a similarly defined map,

Om: Dety ¢, |(RD(Op, [1/Nmp)], T,E)) ™" — H (Op, [1/Nmp], V,E),
sends a Zy[Gp]-basis of Detz (q,.|(RT'(OF,, [1/Nmp, T,E))~! to z8at. In this direction, the

m

equivariant theory of Euler systems, initiated by Burns, Sakamoto, and Sano in [BSS25] and
extended by Burns and the first author in [BB25], can be used to prove that zX8° belongs to
the image of ©,, if Hypothesis (1.2) is valid.

To make this latter statement more explicit, one would ideally replace the étale cohomology
complex RI'(Op,, [1/Nmp|, T,E) with the ‘finite-support cohomology’ complex of Bloch and
Kato, the cohomology groups of which are classical objects such as Sel;)/’ E/K This is also the
strategy used in [Kinll; Ven07; BF24] to relate the Tamagawa Number Conjecture with the
Birch—Swinnerton-Dyer conjecture. However, a significant obstacle arises when attempting to
extend these arguments to the equivariant setting: The finite-support cohomology complex is
rarely perfect as a complex of Z,[G,,]-modules, making it unavailable for equivariant compu-
tations. To overcome this, we carefully construct certain auxiliary Selmer complexes in §4 that
are perfect and sufficiently approximate the finite-support cohomology complex. By applying
purely algebraic results of the nature proved by Burns and Sano in [BS21, App.] and extended
in Appendix B, one may then prove rather generally that one has the inclusion

Hglm(V%)Eulg(t}g))# - Prn(Om(a), Qm) € Fitty 1o 1(Sely pp ) (2)

for every a € Dety, ,.1(RT(OF,,[1/Nmp], T,E))~!. This, when combined with the aforemen-
tioned result on the eTNC, then directly leads to Theorem (1.4) (b).
To prove Theorems (1.1) (a) and (1.6), we ‘combine’ the maps ©,, and 9. That is to say, we
define a certain Nekovai—Selmer complex SC?, with the local condition at a split-multiplicative
prime £ given by €, RI'(Fin,v, Zp(1)) such that the left hand side of (2) belongs to the image
of a certain map

Dety, (¢, (SCo) ™" = Zp[Grm)-
In the context of Iwasawa theory, Nekovar has previously observed in [Nek06, §0.10] that a
complex of this kind detects the presence of trivial zeroes.
Theorem (1.7) is then obtained via a calculation of ‘Bockstein morphisms’ attached to the com-
plex SC3.. These calculations are in many ways parallel to those previously performed in the
context of the multiplicative group by Burns [Bur07, § 10] and Burns—Kurihara—Sano [BKS16,
§5]. The definition of Bockstein morphisms is directly inspired by the ‘algebraic height pair-
ings’ introduced by Nekovaf in [Nek06, § 11}, and we discuss their general formalism in § B.3.
It might be worth noting that, to date, the authors have found such a cohomological interpreta-
tion of V%)Eulg(&g)’l only for primes ¢ which are of split-multiplicative reduction for F. In the
absence of a similar interpretation for the remaining primes ¢ dividing Nmp, we have to impose
the condition ¢ — ay + 1x5(¢) # 0 mod p in Theorem (1.7) in order to ensure the associated
Euler factors are invertible in Z,[G,,]. It would therefore be highly desirable to find a uniform
cohomological intepretation of the constructions made by Otsuki in [Ots09], likely within the
framework of Kato’s ‘local e-constant conjecture’ [Kat; FK06] (see also Remark (5.3) in this
direction).



1.3. General notation

For the convenience of the reader, we collect some general notation that we use throughout the
article.

Algebra Given an abelian group A, we write Ao == |J,, ey A[n] for its torsion subgroup, and
Aygp = A/Apor for its torsionfree quotient. For any ring R, we then write R[A] := @ .4 R for
the group ring of A over R and denote by 7 the image of an element z € R[A] under the
involution #: R[A] — R[A] that is defined by R-linear extension of the rule a — a~! for all
a € A. If M is an R[A]-module, then M# will denote M with A-action given by a-m = a¥ -m.
The completed group ring of A is denoted as R[A] := @U ca R[A/U] with U ranging over all
finite-index subgroups of A. Given a subgroup U of A, we write Ir(U) = ker{ R[U] — R}
for its absolute and I 7 .= Ir(U)R[A] = ker{ R[A] — R[A/U]} for its relative augmentation
ideal. (If the coefficient ring is clear from context, then we suppress the subscript R.)

We write MY := Homy(M,Q/Z) for the Pontryagin dual of a Z-module M. If M is a
Z[A]-module, this is endowed with the contragredient A-action. Similarly, the R-linear dual
Homp (M, R) of an R[A]-module is given the contragredient action. If A is a finite group, then
one has the isomorphism

Homp (M, R)* = Homp4 (M, R[A]), f+— {m— ZaeAf(am)a_l}. (3)

Furthermore, for a fixed prime p (that will always be clear from context), we let A =
@nem(A/p”A) (or A" where notationally more convenient) denote the p-adic completion
of A. The p-primary component of A is denoted A[p™] = |, Alp"].

For any ring commtuative ring R, we write D(R) for the derived category of R-modules. The
right-derived functor of a functor F is denoted RF. For example, we write RHomp(—, R) and
RI'(R,—) := RI'¢(Spec R, —). Left-derived tensor products are denoted ®%. We will use the
determinant functor Detp(—) of Knudsen-Mumford [KM76] (see also § B.1).

Arithmetic Fix an algebraic closure Q along with an embedding ¢:: Q < C. For every natural
number m € IN := Z-( we then set (,, = fl(e%i/m). We also write F), := Q((n) for the m-th
cyclotomic field, set Gy, = Gal(Q((x)/Q), and recall that one has an isomorphism

(Z)mZ)* — Gy, a0

with o, defined by sending (,, to (% . For every prime number ¢, we also write Frob, for a lift
of the (arithmetic) Frobenius automorphism at £ to Gal(Q/Q).

For every finite Galois extension K of Q we set Gx := Gal(K/Q) and we say K is an ‘abelian
number field’ if G is abelian. Given another finite Galois extension L of @ that contains K,
we then write 77/ : C[G] — C[G k] for the natural epimorphism induced by the restriction
map G — Gk.

Let E be an an elliptic curve E defined over @ and of conductor N = Ng, which will be fixed
throughout the article. We also fix a global minimal Weierstrafl equation for £ and write wg
for the corresponding Néron differential. We will often regard F as an elliptic curve over a finite
extension F' of QQy for some prime number ¢, and write E for the formal group of E (usually
with respect to wg). The formal logarithm and formal exponential map of E are denoted as
logz and expy, respectively. The reduction of £/ modulo the maximal ideal of F' (with respect

to a Weierstrafl equation that is minimal over F') will be written as E. We also write Ey(F) and
E1(F) for the subgroups of E(F) comprising points that, over the residue field I of F', reduce
to a non-singular point and to the identity of E(]F), respectively. We also use the semi-local
variants E;(Ky) = @, Ei(Ky) for i € {&,0,1} if K is a number field and ¢ a prime number.
For a prime number p, assumed to be odd in this article, we denote the p-adic Tate modules
of E as

T,E =1

(iﬁlne]NE[p”] and V,E :=Q,®z, T,E.



These are endowed with a natural action of Gal(Q/Q). Given an abelian field K, we often

Gal(Q/K) _ i
G;@/Q) (TpE) = (T,E) ®z, Z,[G] on which

Gal(Q/Q) acts by o - (a ® b) := (da) ® (¢ 'b). Here 7 is the image of o € Gal(Q/Q) in G.
We let 15(z) denote the indicator function of a set S. If S is the set of prime numbers not
dividing an integer N, we write simply 1xy(z).

also write T /q for the induced representation Ind

2. Local points and Mazur—Tate elements

In this section we define the modular elements of Mazur and Tate, and relate them to Kato’s
Euler system. To do this, we follow the approach of Kurihara [Kur02], as further developed
by Kobayashi [Kob03; Kob06] and Otsuki [Ots09], to construct useful local points. After some
preliminaries, the main result of this section is stated as Theorem (2.10).

2.1. Modular symbols

Fix a minimal Weierstrass model of F over Z and write wg for the corresponding Néron differ-
ential. We also fix generators v and v~ of the subgroups Hy(E(C),Z)" and H,(E(C),Z)~ of
Hy(E(C),Z) on which complex conjugation acts by +1 and —1, respectively. Write ¢, € {1,2}
for the number of connected components of E(R), and define periods of E by setting

QJF:QIV::/ |wE|:coo-/ wg and Q:Qwv::coo/ wEg.
’ E(R) vt ’ v

We assume v and v~ are chosen in such a way that Q7 > 0 and Q~ € iR~y.

(2.1) Remark. Artin formalism suggests that the above normalisation of periods, which is
consistent with [WW22], is best suited to the study of special values of L-series. We note,
however, that our convention slightly differs from that chosen by Mazur and Tate in [MT87].
To be more precise, Mazur and Tate use the periods %Q+ and “~. Since the difference only
concerns a possible factor of 2, this will be irrelevant to our main results.

By the modularity theorem [BCDTO01] there is a normalised newform f of weight 2 associated
to the isogeny class of E, which we use to define the map

Ar: Q= C, ar—>27r/ fla+ir)dr.
0

In addition, we define maps []5: Q = R and []z: Q — R by means of
A(a) =[a] QT + [a]zQ~  foralla € Q.

(2.2) Definition. For every abelian number field K of conductor m = mpg, we define the
‘Mazur—Tate element’

Ok =mp k(Y (&EE+[%p)0.) €R[Gk].
a€(Z/mZ)*

If K = F,,, then we abbreviate this to OMT = O%AmT

(2.3) Remark. (a) The Manin-Drinfeld theorem [Man72; Dri73] implies that the modular
symbols [-]* are rational-valued, hence 631 belongs to Q[Gk]. In addition, the Mazur—

Tate elements have nice integrality properties which are discussed in detail in Appendix A.

(b) Write F)} for the maximal real subfield of F,. Then %9;/[; coincides with the ‘modular

element’ defined by Mazur and Tate in [MT87, (1.2)]. This follows from the fact that
A(SE) =A%), (cf. [WW22, Lem. 5]).




(c) Birch’s formula (see [MTTS86, (8.6)]) implies that, for every primitive Dirichlet character
x of conductor m, the Mazur—Tate element is related to L-values via the interpolation

property
G() - L(E,x 1)
X)) = 0
with the (primitive) ‘Gauss sum’ G(x) = ZGG(Z/mZ)X X(aa)e%m/m € Cand ¢(x) = + if
X is even and €(x) = — if x is odd.

The Mazur—Tate elements satisfy the following norm relations.

(2.4) Proposition (Mazur-Tate). For every m € IN and prime number £ one has that

(ag — In(O)o,t — o) - OMT if £ m,
7Tmﬁ/m(emé ) = gMT _ 1 MT :
- —IN()NE, /7 wyeOmpe L | m.
Proof. This follows from [MTT86, (4.2)], see also [MT87, (1.3) on p. 717]. O

(2.5) Remark. Write D(m) = ged(m, N). If ged(D(m), W) = 1, then the Mazur—Tate

elements satisfy the ‘functional equation’ (see [MT87 (1.6.2)])

O’ = e 0 g (O )7,
where Q = N/D(m) and e; € {£1}. In this case, therefore, 3T and (OMT)# generate the
same Z[G,|-submodule of Q[G,,]. The proof of this functional equation follows from the

corresponding result for modular symbols (see [MTT86, §6 Prop.|), and is given, in the case
m and N are coprime in [Otal8, Prop. 5.16]. The proof for general m and N is identical.

2.2. Local Tate duality

For every finite place v of K we write E(K,)" = lim ]N( (K,)/p"E(K,)) for the p-adic
completion of the group of K, -rational points FE (K ) of E. We denote the local Kummer map
as k() E(K,)" — HY(K,, T,E) and, for every prime number ¢, denote its semilocal variant
as k(0): D E(K,)" < HY(Q, Tk/q). Following Bloch and Kato [BK90], we define local
spaces

H}(QE,TK/Q) = im(s®)) and H/lf(Qg,TK/Q) = coker(x").
Recall that the Weil pairing induces a canonical isomorphism (T,E)*(1) = T,E and hence a
cup product pairing

H'(K,,T,E) x H'(K,,T,E) = H'(K,, T,E) x H'(K,, (T,E)*(1)) = H*(K,,Z,(1)) = Z,

for every p-adic place v of K. Taking the sum over all p-adic places of K then gives a pairing

Tr
HY(Qy, Ti)q) x HY(Qp, Ti/q) — @v‘pzp 2 T (4)
By [BK90, Prop. 3.8] the space H}(Qp, Tkq) is self-orthogonal under (4) and so it induces a
pairing
() ‘)E/K3 H/lf(QpaTK/Q) X H}(QP’TK/Q) = Zp. (5)
In particular, every Q = (Qu)y|p in H}(QP,TK/Q) =@, Ip im (k")) gives rise to a map

Pr(-,Q): HY(K,T,E) — Z,[G], QHZ loc/f oa) Q)E/Ko_l, (6)

where, as before, G = Gal(K/Q) and loc'?) = @v‘ploc( ") with loc!”) the composite of the

/f /f /f
restriction map loc(: : HY(K,T,E) — H'(K,, T,E) and the projection onto H/ K,,T,E).
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(2.6) Remark. Write Vi@ = Tk/q®z, Qp. We note that the pairing (-, -)E/K can be linearly
extended to a pairing on H/lf(Qp,VK/Q) X H}(Qp, Vk/q)- As a consequence, for every Q €

H}(Qp, Vi /q) we also obtain a map H'(K,V,E) — Q,[G] that we denote by P (-, Q) as well.
Since the target of (6) is Z,-torsion free, it factors through the natural map H'(K, T,E) —
H(K,V,E) and so we feel this slight abuse of notation is not unjustified.
Write

expyc, : H}((Ky, VpE) = Fil’Dag k., (V, E) (7)
for the ‘dual exponential map’ that is defined by Kato in [Kat93, Ch. II, § 1.2.4] and define the
composite map

Do|p XPk, . ~
expl, : @v|pH}f(Kv, V,E) 22— @UlpFﬂODdR, K, (VpE) = (Qp ©q K) ©q H'(E,Qq)

wp—1

Qp ®Q Ka
where the second arrow is the comparison isomorphism of p-adic Hodge theory. The following
result then records the basic properties of the pairing P(,-).
(2.7) Lemma. Fiz Q = (Qu)y), € Hj(Qp, T/q) and let a € H'(Ok 5, T E).
(a) Assume that p is unramified in K if E has additive reduction at p. Then one has
Pr(@.@) =" . Tr@ueqn/q, ((1085(Qu)y - (expl, oloc)(0a)o ™. (8)
(b) For every x € Z,|G] one has z - Px(a,Q) = Pr(z - a,Q) = Pk (a, 27 - Q).
(¢) If L is a subfield of K and H = Gal(K/L), then in Z,|G 1] one has
Tx/L(Pr(a,Q)) = Pr(cores 1 (a), Tr/r(Q)).

In particular, if a is fived by H, then P (a,Q) = Pr(a, Trg/(Q)) - Ny in Zy[Gk].
Proof. In light of Remark (2.6), we may verify claim (a) after extending scalars to Q,. The
assumed validity of Hypothesis (1.2) (iii) moreover implies that our fixed minimal Weierstraf
equation (over Q) is still minimal over K, for every v | p, and hence that wg is a Néron

differential for E/K,. Given this, the key point is then that, by [BK90, Ex. 3.11], one has the
commutative diagram

oxpl .

Qp ®Zp H/lf(Qp7 TK/Q) ” Qp ®Q K
21\L * =~ A * exp*E :\L *
(Qp ®z, H;(Qp, T /q))" — Byp(Qp ¥z, E(K,))" — (Qp ®q K)™.
Here the vertical isomorphism on the left is induced by the fact that the pairing (-,-)g/k is
perfect after extending scalars to Q, (by [BK90, Prop. 3.8]), and the vertical isomorphism on

the right is the map Q, ®q K — (Qp ®q K)* that sends a — {a — Tr(q,sqK)/q,(a®)} (and
so is induced by the trace pairing). Finally, the map exp*E is induced by the duals of the

exponential maps expz of the formal groups Eof E /K, (associated to wg).

Now, the commutativity of the diagram implies (z,expg(a))g/x = Tr(Qp®QK)/Qp(a expy, (7))

for all z € H/lf(Qp,VK/Q) and a € Q, ®q K. Claim (a) then follows upon substituting

a =logz(Q).

Claims (b) and (c), in turn, are verified by means of direct calculations (cf. [Ots09, Lem. 3.5]).
O

2.3. Kato’s Euler system

Recall that, for every prime number ¢, the ‘Euler factor’ at £ # p is defined as
Euly(X) := detq, (1 — Frob, ' X | (V,E)*) € Q,[X],
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where Z, C Gal(Q/Q) denotes a choice of inertia subgroup at ¢. Explicitly, one has (see, for
example, [Kinll, Ex. 1.26])
Euly(X)=1—al ' X + 15001 X2
For any integer n, we let S,, denote the set of prime divisors of n. We also write Sy = S,U{oco}
and set
S(K) = pNmoo
with m := mg the conductor of K and N := Ng the conductor of F.

(2.8) Theorem (Kato). Let .# denote the set of finite abelian extensions of Q. Then there
exists a collection of elements

ZKatO = (Zflgato)[(ey S HKEQ‘HI(OKS(K)’ VpE)
with the following properties.
(a) If L, K € F with K C L, then one has

Kato

Coresy, /x (2,"°) = Eul,(Frob, 1)) - 252,

(HZES(L)\S(K)
where Coresy,/rc: H'(L,V,E) — H (K, V,E) denotes the corestriction map.
(b) Set

Kato .__ —1 —1‘ Kato
YO0 = (HZESN\SPMKEulg(FrObZ )z

If E[p] is irreducible as an F,[Gal(Q/Q)]-module and E(K) contains no point of order

p, then cooy"% (and hence also coozK™°) belongs to HY (O (k) TpE).

(¢) One has the equality
Lgy(E, x4 1)
* Katoy\ __ S\ X
(®v|p eXpKU)(ZK ) - (er(/}}; Qsen(x) ex) R WE
in ®v|p FﬂgR,Kv (VpE) = Q, ®q H'(E, Q}E/K) = (Q ®q K) ®q H(E, Q}E/Q)-

Proof. The elements 2K are defined by slightly modifying the elements cﬁdzfﬁ) (f,1,1,¢,S(K))
constructed by Kato in [Kat04, (8.1.3)]. The integrality property in claim (b) is proved by the
argument of [Kat04, p. 12.6] (following Delbourgo [Del08, App. A], see also [Kat21, Thm. 6.1])
and the ‘explicit reciprocity law’ in claim (c) follows from [Kat04, Thm. 9.7 and 12.5]. O

(2.9) Remark. Suppose the Galois representation pg ,: Gg — Aut(T,E) = GL(Z,) contains
SLa(Zyp). Then E|p] is an irreducible IF,[GgJ-module and E(K) has no non-trivial point of order
p for all finite abelian extensions K of Q.

We now explain the link between Kato’s Euler system, as normalised in Theorem (2.8), and
the Mazur-Tate elements 63T .

To prepare for the statement of our result in this direction we define, for a € IN, an auto-
morphism &, of Z[(n] as follows. Set mg =[] o £ and my == m/my so that we have a
decomposition m = mims. We then take &, to be the image of g, under the splitting map
Gmy = Gmy X Gy, = Gy, that sends g — (g,idsz). In particular, 6, agrees with o, if a is
coprime with m, and is the identity map if m | a (more generally, if and only if m; = 1).

The main result of this section is as follows.

(2.10) Theorem. Let m be a natural number coprime to p and fix n € Z>o. If E has additive
reduction at p, then we take n = 0. We also write T for the p-adic Teichmiiller character
(regarded as a character Gppn — 7.5 ). Then there exists

Enpn € Qp @z, E1(Finpn p) = Qp @z, @

v|
and, for every prime number £ | m, an element V%;n € Zp|Gmpn] with the following properties.

pEl (Fmp”w)

11



(a) One has
~ \— 14 # ato
(HZ|mEUI€(Je) L. I/T(n;)n) . PFmpn (y}v{zp% 7Emp") = 9%;"
(b) The element (1 — e )Empn belongs to (the image of ) Ey(Fppn p) + (PEuly(0,)) " E1(Finp) -
If p is not a multiplicative prime and a, 1 mod p, then also €y,yn belongs to E1(Fppn p).
(c) One has the following equalities in Qp @z, E1(Fpprp)-

Enpr — LN (P)mpr- fn>1,
(i) Trmpn+1/mp“ (Emp”-%l) = Aptmp n(p) P_l 1 an
(ap — In(p)op — o Y, ifn=0.
Cppn if 0| m,

(i) For every prime number £ # p, one has Tryppn /mpn (Bompn ) = Y .
—o, Eppr if L m.

(d) Write Dfﬁ;n C Gpn for the decomposition group of £. If any of the following hold:
e ay=2, (1N and (> m,
ea=1andl|N,
e ay=0,(|N and /? | m,

then V(e)

mp™

belongs to Ipfﬁ;n = ker{Z,[Gmpn] = Zp[Gmpn/D%;n]}. Furthermore, one has

the following congruence modulo I;(g) ;

mp™

0 if ag = 2,01 N and (> { m,
vaf;)an = g—(ordg(M)—l)(l _ 5’6) if ay = 1 and ¢ | N,
0 ifag=0,0| N and £? | m.
(e) Each V%;n belongs to the ideal of Zy[Gmpn| that is generated by Euly(6,) and NIT(f;n, with

I,Sg,n - DY | the inertia subgroup at £.

mp

The proof of this result is given in §2.5.3 after a number of preparations. To end this section,
we comment on the hypothesis a, 1 mod p that appears in claim (b) of Theorem (2.10).

(2.11) Remark. Primes p of good reduction for which E (IF,) contains a point of order p (or,
equivalently, for which a, :=p+1 — |E (IF,)| is congruent to 1 mod p) are called ‘anomalous’
by Mazur in [Maz72]. Hasse’s bound implies that one has a, = 1 for any anomalous prime
p > 7, and this combines with a result of Serre [Ser81] to show that the set of anomalous
primes is of density zero. It is not known whether an elliptic curve can have infinitely many
anomalous primes (although Mazur has conjectured this to be possible and it would follow
from conjectures of Hardy—Littlewood, see [Qinl6], and Lang-Trotter [LT76]). Given any set
of prime numbers P, one can however construct an elliptic curve E/Q such that every prime
in P is anomalous for E (see [Maz72, Lem. 8.19]).

If £(Q) contains a torsion point, then the set of anomalous primes for F is either empty, consists
of a single element, or else is contained in {2,3,5} (see [Maz72, Lem. 8.18]). For example, if
E(Q) contains a point of prime-order ¢ # p and E has good reduction at p > 5, then a, # 1
mod p.

2.4. Otsuki’s elements

In this section we first recall important definitions and results from Otsuki’s article [Ots09],
and then further develop certain aspects of Otsuki’s theory. This will be crucial to the proof
of Theorem (2.10).

12



2.4.1. Review of Otsuki theory

For every natural number a € IN, we will use the Q-algebra homomorphism
Ga: QIX] = Q[X], 64.(X) = X"

(2.12) Lemma ([Ots09, Prop. 1.3]). The following claims are valid for every m € N and
prime number £.

(a) Euly(6y) defines an invertible Q-algebra endomorphism of Q[X]/(X™ —1). In particular,
there is a unique well-defined element Euly(6,)~" € Endq ag(Q[X]/(X™ — 1)).

(b) If £t m, then Euly(6¢) defines an invertible Q-algebra endomorphism of Q[ X]/(®,,) with
®,, the m-th cyclotomic polynomial. In other words, Euly(6,)~! induces a well-defined

element of Endg als(Q[X]/(®rm)).

Proof. To prove claim (a), it suffices to show that Euly(6¢) defines an injective endomorphism of
the finite-dimensional Q-vector space Q[X]/(X™ — 1) and this is verified in [Ots09, Prop. 1.3].
As for claim (b), it follows from the fact that 6, preserves the ideal (®,,) if £ 1 m that Euly(dy)
does the same. Since we know Euly(6¢) to be injective by claim (a), this shows that Euly(dy)
restricts to an automorphism of the Q-subvector space (®,,)/(X™ —1) of Q[X]/(X™ —1). As
a consequence, Euly(64)~! preserves (®,,)/(X™ —1). This shows that Euly(6¢) and Euly(6,)~!
both descend to elements of Endg ais(Q[X]/(®,)), as required to prove claim (b). O

The endomorphism Euly(64)~! introduced above is rather inexplicit but does satisfy a certain
inductive relation that will be useful in computations. To state this relation, we shall use
certain constructions, themselves based on [Kur02, §2.2], that are made by Otsuki in [Ots09]
and which we now recall. For a prime divisor ¢ of m and integer ¢ € Z>o we inductively define

elements cge) € Z[1/{] as follows. Set c(()z) =0, cge) =1 and, for ¢ > 2,

A0 B _ In () o ()

i+1 ¢
For i € Z>( we also define a polynomial Fg( )(X) € Z[1/{[X] by

(e {4
FO(X) =, -

By induction on 5 € IN, one then proves the key relation

Euly(64)~ Z l) & —|—FJ) (6¢)Euly(6y)~ 16?, (10)

(see [Ots09, Lem. 2.6] for details).

2.4.2. The definition of Otsuki’'s elements

In this section we discuss the canonical local elements defined by Otsuki in [Ots09, Def. 2.4].
(2.13) Definition. For every natural number m, we define
e = ([T, Ble@) ™) (X)) (Gn) € Fon

(2.14) Remark. Our definition of z,, differs slightly from that of Otsuki in [Ots09]. To be
precise, if we write 29! for the element denoted as x/,, in [Ots09, Def. 2.4], then

. xq%tsuki if p | m
" Eul,(op) 12Ok if ptm.
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In the remainder of this section, we will make the element x,, more explicit. To do this,
it is convenient to introduce some further notation. For every prime number ¢ and integers
0<j<n,weset egﬁj = E_(”_l)NFZn/Q and egi)j = E_(”_j)NFm/F“. If m’ € N is coprime with
£, then one has

o0 é e
14 . l e
leej = wf(l,; . Z gm%i with w( 3 61(57)1 if ] = 17 (11)
' —&ee!) if j =0
€50 if j=0.
Here w(é;» is considered to be an element of Z,[G, | via the splitting G = Gy X Gpn
induced by the relevant restriction maps. We may then define an element of Z[1/¢][G][X] by

n—1

AD(X) = Bualo(X) (D eyl ) = B (0 Xellh,
=0

(2.15) Lemma. For every prime number ¢ # p and natural number n the polynomial AP (X)
has the property that, for every m’ € IN with £+m’, one has the following equality in Fyn

(Bul(60) (X)) (Gmren) = Bule(50) " - M) (6 Z Cmrei-

Proof. We first make the useful observation that one has
((F 60 Bule(6) 57 ) (X)) (Gen) = F (@) Bule(00) ™ - G- (12)

To justify this, we note that 67(X) = X" belongs to the image of the map Q[X]/(X™ —1) —
Q[X]/(X"™ —1) that is defined by sending X — X*". From the commutative diagram

QUX]/(X™ — 1) X=X QU] /(x — 1)
le—)C ’ lX'—)anm/
ot 2 > Q[Cﬁnm’]

we therefore see that is suffices to compute (F e(n)(&g)Eulg(@)*l)(X ) evaluated at X = (/. By
Lemma (2.12) (b) the endomorphism Euly(6¢)~! of Q[X]/(X™ — 1) descends to Q[X]/(®yn)
(and corresponds with multiplication by Euly(o¢)~! under the isomorphism Q[X]/(®,,) =
Q[Gy] that sends X +— (), so this computation can be done in Q[(,] and leads to the
claimed equality (12).

Now, (12) combines with the relation (10) to imply that one has

n—1 _
(Buly(60) ™ (X)) (Guren) = (D 1650 + (B (60) Bule(60) ™ 67)(X)) (Grer)

1=0

Z CH»lCm/E” i (ﬁz(n) (50)Eule(60) " ¢mr)

n—1
= (Z 521“’7(121 Z—i—F( )(Ug)Eulg (6¢) lw ZCmIZZ
=0

= Eul(6,) "t A9 (5 Z Corti
as claimed. O

For every natural number m € IN and prime divisor ¢ # p of m, we define

oD = A oy (50) € Zp[Gi).

ordg(m
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The following result, in which we write mg = Hamﬁ for the ‘squarefree radical’ of an integer

m, describes the contribution to the definition of x,, of the factors Euly(6,)~! for £ # p in
(0)

terms of the elements vy, .
(2.16) Proposition. Let m be a natural number coprime to p. For every integer n > 0 one
has
~ N ¢ .
g = ([T Bule(@e) ™ - vi) - D7 (Buly(3) ™ (20) (Gapn)-

lm mol|d|lm

Proof. Factorise m as [[;_; £ and set 511 := p and nsy1 = n so that mp™ = Hf+11 0. We

shall prove by induction on 0 < 5 < s that one has

7 s+1
LTmpn = (HEUI&(&&)_I ’ Vr(wf;)”) ' ( Z ( H EUI&(OA-&)_I)(X)> (Cdmp"/mj) (13)
i=1 mjoldm; 1=j+1

with m; = [[/_ 16;“. Taking j = s, this then implies claim (a). If 7 = 0, the claim follows

directly from the definition of x,,,». For the inductive step we assume that j > 0 and that
(13) is valid for j — 1. We introduce the notation

e if0<q<n—1,
o) =< 2
7 F (60)Eule(60)~" i ¢ = ny,

so that the relation (10) can be compactly written as

A - ~(6:) ~
Euly, (6¢,) " :Z <(1+)1‘Te

q=0
Define &7 (j) = Hjijﬂ{o,...,ni} and, for every a = (ajt1,...,as) € H(j), write |a| =
Hf+]1 1 ai- Then we have
s+1 s+1 n;
(TT Ewe,(60,) 1 )(X) = (Euuj (60,7 ( ag@&gi))(X)
i—j i=j+1 q=0
s+1

aEd(]) i=j+1

Fix a divisor d' of m;_; and define d’A = d'mp"/m;_1. If we set

) . {(8) if0<qg<n; -1,
T E 00Bul(o) Tt if g = my,
then (14) combines with (12) to imply that
s+1 s+1

([T Bl (3e) ) O = D CIT G- (Buley (52) 7 (X)) (G-

acd (j) 1=73+1

Let d be a divisor of m; and set d; == dmp™/m;, then the same computation also shows that
one has

s+1 s+1
(TT BuleGe) ™) X)) = > (T €4 Cayal (15)
i=j+1 acd(j) 1=j+1

Next we recall that Lemma (2.15) proves an equality
n;—1

(Eulzj(ffej)_l(X))(Cd;./\a|) Euly, (G¢,)" - Z Cds /(631 al)- (16)
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Now, every m;o | d | mj is of the form d'¢"~7 for some mj_1 | d' | mj_; and g € {0,...,n;—1}
so that d; is of the form d;- /1. As a consequence, we may calculate that

s+1
> (T] Eule, (52,) X)(Car)
myj_10ld|m;—1 =]

s+1
(14) 1
= > > CIT &) - (Buly, (66,) ™ (30)) (S j1ap)
m]',110|d/‘m]',1 (ZGQ{(]) i=j+1
(2.15) st 0) iy
= 3 3 (I ) (uig e A @0 - 3 )
mj,1’0‘d"mj,1 CLE»Q{( ) 1=j+1
(16) (€ s+1
= Buly(5e)™" @) > > (I G- Caypa
mjoldlm; ac/ (j) i=j+1
(15) ’ s+1
=) Buly, (5,,) 7" - Ay (6) - ( > (]I Eulgi(ﬁgi)_l)(X))(Cdj).
mj,0|d|mj i:j+1
By the induction hypothesis, this shows the claimed equality (13) and therefore concludes the
proof of the proposition. O

2.4.3. Congruences modulo augmentation ideals

In this section we investigate when the elements V( )
and also compute its class modulo the square of the augmentation ideal. In particular, the
second part of Theorem (2.10) (d) will be a consequence of these calculations.

We recall that we have fixed an odd prime p, which will be important in the proof of the
following result.

belong to a relevant augmentation ideal

(2.17) Proposition. Let m > 1 be a natural number, let £ # p be a prime number, and set

n = ordg(m). Then the following claims are valid.

(a) Write D%) C Gy, for the decomposition group of £. The element V,Sf) belongs to I,D(e) =

ker{Z,|Gp,] — Zp[Gm/D,(ﬁ)]} if any of the following hold:
e ay=2,(fN and (> m,
ea=1andl|N,
e ay=0, (| N and ? | m.
(b) One has W) = c%)(l — ag0y) + 1N£(E) (fcgf)c}? + cgl) 10¢(€ —1)) (mod Ié%)).

Proof. Tt is convenient to set m’ :== m¢~™ in this proof. To prove claim (a), we first note that,
since ¢ is totally ramified in F,/pm/F,, i, one has that Gal(F, e /F,, ) is contained in D(Z)

for every j € {0,...,n}. As a consequence, we have
efﬁ)j =1 mod L ifje€ {1,...,n}. (17)

In particular, e O belongs to I @ for i € {0,...,n — 2}, and therefore

n,n—i n,n—i—1
V%) = )\,(f)(&g) = Eulg(ég)cgf)eff)l — ﬁf(n) (&g)&gefﬁ)o (mod ID%))

2 Buly(a0)!) ~ F(@)(E 1) (mod Iyw). (18)

For ease of notation we write XE,?,Z- for the quantity on the right hand side of (18) with n

replaced by i. Note that, if i = n, then (18) gives that )\,(f)( ¢) = )\En) n (mod ID(Z)). We work
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©

inductively on 7 and begin by considering an. Since, c(()z) =0 and ng) =1 we can calculate

Ny = Buly(a) - (4 = 250 - )
= =z + 1)) - (% - 2050 1)
= Lo+ 1) (2= 1) moa 1)
1—CL5+1N(€) (HlOd ID%))'

It follows that Xv(q?l €lm if either of the following hold:

e ay=2,({N,

e ay=1and /| N.
If n =1 then )\( )( 0) = ng},l (mod ID%?), therefore the first two points in claim (a) hold in
this case. We now consider X(QQ. Using (9) we calculate

agag  In(0)  In(f) a

N5 = Buly(57)

G et WO IO, 2 50 Wy )

Therefore, if either
o Xf,?,l €I, and £| N, or
e a;=0 andm€ | N.
Then Xff;),,g el Do) By the calculations done for X(Z)

m/,1

we have that claim (a) holds if n € {1,2}.
©)

Suppose n > 3 and let i = 3,...,n. By applying (9) to A, 1 one calculates

5O _axo  In00

m'i / m’,i—1 /¢ m/,i—2"
As with X(Q -2, we observe that if either
o)\gn)z 1 €Ly and £| N, or

o ag:OandNN,

then X(e) INGE Considering this argument inductively completes the proof of (a).
To prove clalm (b) let j € {1,...,n} and calculate
0 _ 1

1 .
— n—j E : _
nj T gn—j Fog = yn=j (e + UEGal(an/Fej)(o- 1)- (20)

Under the isomorphism I ) /112)(@ ~ p¥ g Z, induced by 0 — 1 — o, the sum in (20) is

e

mapped to HaeGal(an/FN-) o. If o has odd order, then o # 0! and so both (element and its
inverse) appear in the above product. It follows that only the (unique) element of order 2 does

not cancel. Since p is odd, this element is trivial in D%) ® Zyp. Therefore,

(Z) =1 (mod 112)%) ).

Similarly, we have 5@655 2) =o¢(f —1) (mod 112)(,5)). It therefore follows from the definition that

v = A0(50) = Buly(Go)elf) — M (G0)ae( — 1) (mod 12,))

1n(£ N

NK()C%)O'Z)O'K(K —1) (mod 122)(,_7))
a; (0 In(0) (¢

The result follows from rearranging and the fact that cﬁf}rl = e — ey, O

1 5 5
= Z(f — agr + 1n(0)57) ) — (05,21 -
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2.4.4. Norm relations

We end this section by proving two norm relations for the elements 1/7(,2,,1 which are required to

establish the claimed congruence of Mazur-Tate elements in Theorem (1.7).
For natural numbers a,b € IN with a | b we denote by m,/,: Zy[Gp| — Zp[G,] the natural map
induced by the restriction map Gy — G,.

(2.18) Lemma. Let m > 1 be a natural number and let £ # p be a prime divisor of m. If
d € IN is a divisor of m with ordy(m) = ordy(d), then one has

4
7-‘-777,/d(7/7(7€)) = Vc(l )

Proof. We set n := ordy(m) and m’ := ml~" so that m = m/¢™. For clarity, let us write 5ém)

for the element previously denoted &y if it is regarded as an element of G,,. That is, &ém) is

(d)

the image of (oy,id) under the isomorphism G,y X Ggn = Gy, Similarly, the element 7, is
the image of (0y,id) under Gy x Gy =2 G4 with d' .= d¢~™. The commutative diagram
Gy 3 Gy X Gon —— G
\Lﬂ-m’/d’ \Lﬂ'm/d
Gy —— Gg x G i> Gd,

)

then shows that we have 7, ,4(5, 5m )) é Using this, we may compute that

m ~ VA
T ja(W D) = T s a MO (G5™)) = A (m,,/0(6™)) = AO (61D = 1P,

as claimed. O

2.5. A construction of local points

In this section we use the theory of formal groups to construct certain local points, and this
will allow us to prove Theorem (2.10) in §2.5.3.

2.5.1. Review of Honda theory

For the convenience of the reader, we review relevant aspects of Honda’s article [Hon70] (see
also [Kob03, §8.1]).

Suppose Q is a finite extension of Q, with ring of integers R, maximal ideal M = (7), and an
automorphism ¢: Q — Q that satisfies ¢(a) = a? mod M for every a € R. We then define
the ‘Frobenius operator’

¢: Q[X] — Q[X], Z@Xl - Z¢ B X

Given f,g € Q[X] and an ideal a of R[X], we write f =¢g mod aif f — g € a.

(2.19) Lemma. Suppose f = > o5, B3iX" is a power series in Q[X] with the property that
i3; € R for every i > 0, and that the power series g = Y ooq d(Bi)((X + 1) — 1) ewists in
Q[X]. Then one has

~

o(f) =g mod 7R[X].
Proof. This follows from the congruence i~ }(X + 7Y)! =i~ 'X? mod 7 in [Hon70, Lem. 2. 1]

(2.20) Definition. Let v € R[X] be a polynomial with uw(0) = 7. A power series f =

S0 Bi X" in Q[X] is of ‘Honda type u’ if By =0, B1 =1, and
(w@)(f) =0 mod RIX].

18



(2.21) Theorem (Honda). The following claims are valid.
(a) Suppose f € Q[X] is a power series of type u € R[X]. Then there exists a one-
dimensional commutative formal group F over R such that logr = f.
(b) Suppose that F and G are two one-dimensional commutative formal groups such that
logz and logg have the same type. Then expgologr belongs to R[X] and defines an
isomorphism F = G over R.

Proof. Claim (a) is proved in [Hon70, Thm. 2]. To prove claim (b), we note that F(X,Y) =
expr(logz(X) + logz(Y)) and G(X,Y) = expg(logg(X) + logg(Y')) by [Hon70, Thm. 1]. If
these have the same type, then they are isomorphic over R by [Hon70, Thm. 2]. By [Hon70,
Prop. 1.6] the latter holds if and only if expgologr belongs to R[X], as required to prove
claim (b). O

We conclude our review of Honda theory with the following result.

(2.22) Proposition. Let E denote the formal group of the minimal model (over Z,) of an
elliptic curve E defined over Q. Then logg is of Honda type p — apX + 1y(p)X2.

Proof. This is proved in [Hon70, Thm. 9, (6.6)] in the case of good reduction and in [Hon68,
Thm. 5] for the case of bad reduction. O]

2.5.2. An ‘Artin—Hasse type’ exponential

In this section we will apply the results from Honda theory reviewed in the last section to a
certain explicit power series. To define this power series, we fix m € IN with p { m and also
let ¢ denote an auxiliary prime number coprime to m(p — 1)p. Take Q to be the unramified
extension of Q, obtained as the completion of F,, at a p-adic place, ¢ = 0, its Frobenius
automorphism, and write (p) C R for the maximal ideal and ring of integers of Q, respectively.
Fix an embedding Q — @p that allows to view (,, for every a € IN, as an element of @. In
the following, we define, for an element ¢ € Z,, the power series

5. o (9 v
(1+ X)° :=exp(dlog(l+ X)) = ZZ:% <Z>X
with () = il" [T/Z4(6 — i) € Zy.
Given F =Y 3;X" € Q[X] and o € Gal(Q/Q,), we also write o(F) :== > 72, 0(8;)X".

(2.23) Proposition. Write 7: (Z/pZ)* — Z, for the p-adic Teichmiiller character. For
every mg | d | m (viewed as an element of Z.; ) and Dirichlet character x: (Z/pZ)* — Z,; with

X # T, we define
[e's) p—1 ’
9a(X) =log(X) + (p— D)7 Y DT O+ DT T~y (21)
i=0 j=1

Then the following claims are valid.
(a) gy.a(X) is a well-defined element of Q[X] and of Honda type p — apX + 1n(p) X 2.
(b) (0,"gx.a)(X) converges at X = (pn — 1 for every n € N, and one has

n—1
-n i—n d~1p?
(05 ") (G = 1) = 1og (G = 1) +ex - D oy ™ (Ca) (G ™ — 1)
=0
1l x(a) o
(c) Set hyq = expgpogyda. Then hy g4 is a well-defined element of R[X], the power series
(0, "9x,a)(X) converges in Gyn — 1, and one has

log (0, "hy,a) (G — 1)) = (0, " gy.a) (G — 1)

with the usual idempotent e, = (p — 1)
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Proof. To prove the first part of claim (a), we note that when expanding out the expression
Yoo z+1<d Z] 1 X “L(H((X+1)?'7@P' ~1), one obtains a power series of the form St BiX!

where ﬁl = Zi:() i+1<d Z‘: X(]) ( Ld 70 ))‘ NOW’
pid= (5 -
S (") S e -0
a=0

l

- ;Zx—lm > Byt 7 )" (22)

with suitable integers B, € Z. Since T # X, we have E; 1 ' x(j)"17(j) = 0 and so the p-adic
valuation of (22) is at least 2i — . Here we are using Legendre’s formula to observe the bound

ord,(!!) < 1. This then combines with the observations that ord,( Z( +)1) > —i and ordp(g“gz) =0
to imply that §; is a sum of terms that have p-adic valuation at least i —{ , and hence converges.
To show that g, 4(X) is of type p — a, X + 1n(p)X? we begin by noting that it is immediate
from the definition of g, 4(X) that its constant term is log7(0) + Bo = 0. Similarly, we see that
9,.4(0) = 1 because 5 = 2z>0 Ei)l p’d ! Ej X)) =o0.

We next verify that (p— ap¢+ lN( )¢2)gx d( ) belongs to pR[X]. In light of Proposition (2.22),
we need only verify that (p — ap¢ +1n(p)d?) >0 Bi X! belongs to pR[X].

Let us consider the p-order of the binomial expression in the definition of 3;. We have

pld1r(j) TT i1
(") = pwa o o o) o
Write [ — 1 in its p-adic expansion, [ — 1 = x,p" + - - - + z1p + g, i.e. x; € {0,1,...,p—1} and
xn # 0. We then note the following equality of sets, for v € {1,...,2,},
{p'd7'7(j) —a (mod p") | (v~ 1)p" +1<a<yp"}
={a (modp") [(y—1)p"+1<a <"}

ord, (Higﬁ" (r'd'7(j) - a>> 0. (23)

(zpp™)!

Therefore,

Similarly, we have for v =1,...,z,_1,

{pd7'7(j) —a (mod p" ) [p" + (v~ p" T+ 1< a<p" +p"
={a (mod p" ) [p"+(y~ Dp" T +1<a<p "}

We note that for any a in the range used in the set above the highest power of p that can divide
it is p"~!. Combining this calculation with (23) we have

Tnp™tan_1p" T G 1
ord, <Ha:1 (p'd Tl(]) a)> >0.
(wnpn + Tp_1p"" )'
Repeating this process one observes that
[Ty (Pd'7(j) — a)
d 4= > 0.
o ( (—1) =0
In particular, ordp((pi(fl1 T(j))) > i — ordy(l). Therefore, by the observations made above we
have lc(p) (pzdilT(j)) € Z,. Thus, we can deduce from Lemma (2.19) that

S (X + 1) T 1)) = B (X7 + 1) O

7,+1
= cif’&«X +1)TOR 1) mod pZ,[X]
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for every z > 0 and j € (Z/pZ)*. For the first equality we note that ¢ acts trivially on

cgf_)l( ) € Qp. We may therefore use the relation pc(p) — apcgp) + lN(p)cgzi)l =0 to

calculate that
o0

(p— apd + In(p)?) S Lt (X + 1) 0w

=0

i

—1)

= Zciﬂ (2 (X + 1770 — 1) a8 (X + 1) )

742

+ v (X + )7 TP 1)) mod pZ, [X]

X + 3 G (5 — apel® Ly ()P (X 1T TR 1)

i=1

= pCﬁX .
This implies the congruence required to establish that g, 4(X) is of the claimed Honda type.
As for claim (b), it follows immediately from the calculations made in the proof of (a) that
81 € R for all I > 0. Given this, it follows from [Sil09, Ch. IV, Lem. 6.3 (a)] that (o, "gy,a)(X)
converges when evaluated at (,» —1 and we may compute (0, " gy 4)((pm — 1) by evaluating (21)
after applying o, (cf. [Kat21, Lem. 3.17]).
Since gy,q4(X) and logz(X) have the same Honda type (by claim (a) and Proposition (2.22)),
it follows from Theorem (2.21) that h, 4 belongs to R[X] and, in particular, converges when
evaluated at (y» — 1. To prove the remaining part of claim (c), we note that we have the formal
identity (loggzoexpz)(X) = X, which implies that (logz ohy q)(X) = gy,4(X) as power series.
Since log has coefficients in @, this also implies that (logg oo, ™ (hy,4))(X) = 0, " (gy,a) (X)-
The latter equality still holds true when evaluated at (,» —1 because the coefficients of o, ™ (hy )
are in R (see, for example, [Rob00, §6.1.5]). O

(2.24) Remark. The purpose of the sum Z?;% in (21) is to avoid delicate convergence issues,
and this extends an idea of Kobayashi. That is, our definition of g, 4 is directly inspired by a
definition of Kobayashi in [Kob06, § 2] that can be seen as a special case of (21) for xy = 1.

We can now define useful local points by appropriately evaluating the power series h, g defined
in Proposition (2.23).

(2.25) Definition. Take €4 to be a preimage of (qp under logg: E(pR) = Go(pR). We define
an element of Qp ®z, E(Mg(c,.)) as
Typpn = Z (Z (U;n(hx,d)(Cp" -1) —F (Cp" - 1)) +5 (pEUIp(Up))ila;;n(fd))a
moldlm  X#T

where the sum ranges over all characters x: (Z/pZ)* — 7, that are not equal to the Teichmiiller
character T and MQ(Cpn) is the mazimal ideal of Q((yn).

The following result establishes the connection of these local points with Otsuki’s elements
from Definition (2.13).

(2.26) Lemma. In Q,((mpn), one has the equality
log(Tmp) = (1 —er) - Y (Bulp(6p) (X)) (Capn)-

mol|d|m

Proof. At the outset we recall that the idempotent 1 — e, acts as the identity on Q. Using
Proposition (2.23) and Otsuki’s relation (10) (for the equalities (x)), we may then calculate
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that

logﬁ(%mp") = Z (Z (Up_n(gx,d)(gp" -1)— IOgE(Cp" - 1)) + (pEu1P<O-P))_1pJp_n(<d))
mol|dlm  XF#T

n—1

® S (1) o ()¢ P - 1)
mold|m i=0
n—1
+ (D oy + B () - Buly(op) ™), " (Ca)
i=0

= Z (1—e7) ZC2+1O' Cd d ' +F(")(ap) Eul, (o)™ -ap_l(Cd)))
mold|m

n—1

=(1—e) > (Y cindl+ EM(op) - Buly(op) ~'67) (X)) (0, (C) G )

mol|dlm =0

(*) (1—e;)- Z (Eulp(Ffp)_l(X))(Cdp”)a

mold|m

—

where the last equality uses that o, "(Cd)gf; e Capr - O

2.5.3. An explicit reciprocity law and the proof of Theorem (2.10)

We require the following modification of Kato’s explicit reciprocity law (as stated in The-

orem (2.8) (c)).
(2.27) Proposition (Otsuki). For every m € IN coprime to p and n € Z>q one has
> TN Qo Py /@y (O (@mpn) - (expl, oloct)) (yai))o = O

Proof. This is proved in [Ots09, Thm. 3.6]. Note that p is assumed to be a prime of good
reduction for E in loc. cit. but this assumption is not needed for the proof of [Ots09, Thm. 3.6].
Furthermore, the difference between z,, and zO%" noted in Remark (2.14) is taken into
account by our definition of yXa%* (which differs from the element used by Otsuki in [Ots09,
Prop. 3.2] by Eul,(o;,1)™1). O

We now give the proof of Theorem (2.10).

Proof (of Theorem (2.10)): Let p,» be the preimage of Zm0|d|m(Eulp(&p)_1(X))(Cdpn) €
Qp ®z Finpr under the isomorphism

H}(Qpa VpEFmpn/Q) = @U‘p(Qp ®Zp E(Fmp”,v)) i> @U|p(Qp ®Zp OFmP”,v) = Qp ®Z Fmpn

defined as the sum @, log; of the formal logarithm of E/Fy;n . Claim (a) of Theorem (2.10)
follows by combining Proposition (2.16) with Proposition (2.27) and Lemma (2.7) (a, b). To
prove claim (b) of Theorem (2.10), we recall that Otsuki has proved, in [Ots09, Prop. 4.5], that

Emp@p) ) (@v|p IOgE)(El(Fmp”,p)) = Zp ¥z, OFmpn

if p is a good prime with a, # 1 mod p, and the same proof works if p is an additive prime
(and n = 0). In this case, therefore, £,,,» belongs to Eq(Fipn p), as claimed.

We observe that Lemma (2.26) implies that (1 — e;)€y,n is equal to the family (Zmpnv)yfp
with Zpn , the element from Definition (2.25) with Q taken to be the completion of F),, at
the place lying below v (so that Q((y») is the completion of F,,» at v). By construction,
pEul, (6p)Zmpn » belongs to E(./\/l Fmpn,v)7 with Mp, ., the maximal ideal of Fj;n,. Hence
(1 — e;)pEul,(6p)tmpn belongs to Eq(Fipn p), as claimed.

We now turn to the proof of claim (c). At the outset we note that it suffices to prove the
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claimed relations for the elements (&, logz)(Empn) = Euly(6,) 7" - 2 moldjm Gapr - Equality (i)
then follows from the fact that by [Ots09, Prop. 2.5] one has
Trmp"+1/mp" ((Elﬂp(a—p)_l (X))(Cdp")) = Trdp"+1/dp" ((Eulp(6p)_1 (X))(Cdp”))
apCdp" — 1N(p)cdpn71 if n > 27
apCapr — 1n(p)Eul,(op) ¢4 ifn=1,
(ap — 1In(p)op — Up_l)Eulp(Up)_lgd if n =0.
As for the equality in (ii), we let d be a natural number with mg | d | m and first recall that
Trygpn /dpn (Geapn) vanishes if £ | d, so that

{Trgmpn/mpn (Zmo|d|m Cdp") if £ ’ m,

Tr mop™ /mp™ Tl —
tmp" fmp ( Z Cdp ) Trﬂmp"/mp"(2m0|d|m CZdP") leTm

(Em)o|d’ |[em
Claim (ii) therefore follows from the observation that, for a natural number d’ | m, one has
L pn if 0t d,
Tr mp™ /mp™ Ipn ) =
e g () {—aglgd,/g it ] d.

We show claim (d) of Theorem (2.10) working case by case.
If ap =2, £ N and ¢% { m, then ordy(m) = 1 and thus from Proposition (2.17) (b) we have

. 1n(¢ . .
y,(f;n = ng)(l — ayoy) + Né( )(ﬁjcg)af + C((]Z)Ug(f —1)) (mod I;(Z) ).
mp™
Since c((f) =0 and ng) = 1 we can calculate

v =1-25462=(1-6,)=0 (modI%, ).

mp
If 15(¢) = 0 then one can inductively show that cg-e) = (%)7~! for j > 1. Proposition (2.17) (b)
now gives that, in this case,

SO cgg)(l — ay6y)  (mod I? © )

mp"™ —

In both the remaining cases of claim (d) of Theorem (2.10) we have 15 (¢) = 0, hence the result
follows immediately from the above equation and definition of cg-e) in these cases.

Finally, claim (e) is immediate from the definition of )\E)Qiz (m

)(X ) upon noting that the element

(© = —Gol ordg(m) Ngp
4

Word, (m),0 Q differs from N

ordg(m)/ 4o only by a unit in Zy|Gmpn]- O
mp™

3. Nekovai—Selmer complexes and the equivariant Tamagawa
Number Conjecture

In this section we recall some general aspects of the theory of Nekovai—Selmer complexes and
discuss examples of such complexes that will be important to us. Even though most material
contained in this section extends to general p-adic representations, we prefer to restrict atten-
tion to the setting most relevant to us — namely that of the representation given by the p-adic
Tate module of E. For a more in-depth treatment of Nekovai—Selmer complexes an interested
reader is invited to refer to [Nek06] or [BB25, § 3.

We freely use some of the notation and conventions introduced in Appendix B. In particular,
we write D(R) for the derived category of R-modules of a ring R and DP**{(R) for its full
triangulated subcategory of complexes that are perfect.

Given a profinite group ¢ and a finitely generated R-module M endowed with a continu-
ous action of ¥, we write €*(¥, M) for the associated complex of continuous cochains and
RI'(¥, M) for the object of D(R) defined by €*(¥4,M). If F is a field with absolute Galois
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group 9 = Gal(F/F), then we abbreviate this to R['(F, M) := RT(¥p, M). If F is a number
field and the action of ¥z on M is unramified outside a finite set U of places of F', then M is
naturally a module for ¥ry == Gal(FV/F) with FU C F the maximal extension unramified
outside S and we write RI'(Opy, M) = RI(Yry, M).

3.1. Nekovar—Selmer structures

We begin by introducing a suitable variant of the notion of ‘Selmer structure’ used by Mazur

and Rubin in [MRO04, Def. 2.1.1]. Recall that we have defined S(K) = SpNmoeo, Where m

denotes conductor of K and N is the conductor of F, and that Shapiro’s lemma gives natural

isomorphisms RI'(Oqu, Tk/q) = RI'(Ok,u, TpE) and RI'(Qu, T /q) = D), RI'(Kw, THE) for

every finite set U C S(K) and place v of Q.

(3.1) Definition. A ‘Nekovdr-Selmer structure’ F for Ty q consists of the following data:
o A finite set S(F) of places of Q that contains S(K).

e For every place v € S(F) a complex RT'7(Qu, Tk /q) of Zy[G]-modules together with a
morphism iF y: RIUF(Qu, Tk/q) — RI(Qu, Tk /q) in D(Zy[G]).
One then defines the ‘Nekovdr—Selmer complez’ RI'z(K, T,E) as

Dy ( )(locv_i}',v)
cone{RT(Ok s7): T,E)® P RIF(Qu, Tx/q) ——— P RO(Qu. Tr)q)} -1,
vES(F) vES(F)
where loc, denotes the natural localisation map

RI(Ok.s(7), TpE) = EDRI(Kw, TpE) = RT(Qy, Ti/q)

wlv
for every v € S(F), and sets H-(K, T,E) := H(RTx(K, TyE)) for alli € Z.

(3.2) Remark. For every Selmer structure F, the octrahedral axiom implies the existence of
an exact triangle

RT7(K, TyE) — RU(K, T,E) — @,csRT/# (Ko, ToE) — RLF(K, T,E)1]
with RI' /7 (K, TpE) = cone(ixy)[—1].

(3.3) Examples. (a) (Relaxed structures) For every finite set ¥ of places of Q that contains
S(K) we define a ‘relaxed’ Nekovai-Selmer structure F; ;o by taking

® S(]rgre]) = E,
e RI'7, ,(Qu, Tk/q) = RI'((Qu, Tk /q) for all v € S(Fs rel),
® ir, ., to be the identity map for all v € S(Fs rel)-
The associated Nekovai-Selmer complex RI'z,, ,, (K, T E) then coincides with RT'(Ok 52, T, E).

(b) (Strict structures) For every finite set of places of Q that contains S(K) we define a
‘strict” Nekovai-Selmer structure Fx g, by means of

° S<fz,str) = 2,
e RI'7, . (Qu, Tk )q) = 0 for all v € S(Fssur),
® iry 0 =0 foralve S(Fssu)

The associated Nekovar-Selmer complex RI'z,, ., (K, T E) then coincides with the ‘compact-
support’ cohomology complex RI'c(Og x, T, E).

(3.4) Remark (Dual structures). For every finite place v of Q local Tate duality induces an
isomorphism (cf. [Nek06, Th. 5.2.6])

RHomgz, (RI'(Qu, Tk /q), Zp)[—2] = RI(Q,, }*(/Q(l)) = RI(Qu, Tk /q)- (24)
(Here the second isomorphism is induced by the Weil pairing.) Any Nekovai—Selmer structure
F on Tk q therefore naturally induces a dual structure F* by taking
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o S(F7) = S(F),
e RT7(Qu, Tx/q) = RHomz, (R (Qu, Tk /q), Zp)[—2] if v is finite and zero otherwise,

® ir«, is the composite of RHomz, (if,,, Zp)[—2] and (24) if v is finite (and the zero map
otherwise).

3.2. Compactly supported étale cohomology

Fix a finite set X of places of Q that contains S(K). In the next section, we often use the
complex

Ck s = RHomz, (Rl(Ok 5, T, E), Zy)[—3].

The following result records useful properties of the complex CF 5.

(3.5) Lemma. Let ¥ be a finite set of places of Q that contains S(K), and assume that E(K)
has no point of order p. The following then hold.

(a) Cy 5 is a perfect object of D(Zy,[G]) that has vanishing Euler characteristic in Ko(Zy|G]
and is acyclic outside degrees one and two. There is a canonical isomorphism Hl(CI'(’Z) =
HY(Og s, ToE) and a split-evact sequence

0 —— H*(Okx, TpE) — H*(Ckx) —— (Ti)g)" —— 0
with Tyt ¢, = HO(R, Tie /).
(b) Ck s, admits a standard representative in the sense of Definition (B.3) with FY=0.

Proof. The assumption that E(K)[p] vanishes implies that H'(Of 5, T, E) is Z,-torsion free
(cf. [BD21, Ex. 3.3(b)]). That is, [BS21, Hyp. 2.16] is satisfied and so [BS21, Prop. 2.22 (ii)]
combines with [BS21, Prop. A.11] to imply claims (a) and (b). We only note that the description
of the cohomology given in claim (a) is a consequence of the fact that Artin—Verdier duality
(as in [BFO1, Lem. 12 (b)]) induces an exact triangle

RU(Ok s, TpE) — Chx — (Ti)q)"[=2] — RI(Oks, T,E)|[1]
in D(Z,|G)). O

We next make a convenient choice of Z,[G]-basis for T} g To do this, write w, for the

place of K corresponding with tx, the restriction to K of the embedding ¢: Q «— C fixed
in §1.3, and denote by Dg? C G the associated decomposition group. Viewing w, as an
equivalence class of embeddings o: K < C, one has that Z, ®z (B,,, H' (E%(C),Z))" =

((@oem Zy0) @7 HY(E(C), Z)))+ is a free ZP[D%)]—module of rank one with basis
1x = (5(1+ ek @ 74) + (3(1 = Qe @ 7-).

We then define b := bg to be the image of vx under the comparison isomorphism
Zy 9z (@D, _, H'(ER(C), ) = H'(K,,, T,E).

By construction, the element b is indeed a Z,[G]-basis of TIJg/Q =Dy HY(K,, T,E).

Let ¥ be a finite set of places of Q that contains S(K), and write

Oy = 190;(727{1,*}: Deth[G](C’;(’Z)_l — H! (OK’z, VpE)
for the map from Definition (B.2) with b* the Z,[G]-linear dual of the basis element b € T} Q
defined above.

(3.6) Theorem. Assume p > 3 is a prime number such that the image of pg, contains
SLy(Z,). If E does not have potentially good reduction at p, then we also assume that K does

not contain a primitive p-th root of unity. Then legato is contained in the image of O 5(x)-
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Proof. This is proved by Burns and the first author in [BB25, Cor. 9.6 (i)]. O

(3.7) Remark. The result of Theorem (3.6) is directly related to the ‘equivariant Tamagawa
Number Conjecture’ for the pair (h'(E/K)(1),Zy[G]), see [BB25, Rk. 9.7] for more details.

3.3. Bloch—Kato Selmer complexes

Following Bloch and Kato [BK90], we define the local ‘finite-support’ cohomology complex

— eaw\v E(K’U)A[_l] ifUTOO,
er(Qv, TK/Q) = {RF(QM TK/Q) if v = oo,

for every place v of Q. For every finite set of places ¥ containing S(K), one then defines the
Bloch-Kato Selmer structure Fx, gk for Tiq as follows.

[ ] S(]:E,BK) = E,
d RF}—E,BK(viTK/Q) = RFf(QU,TK/Q) for all v € X2,

® iry gk, 18 taken to be the map induced by the Kummer map if v € ¥ is a finite place
and the identity map if v = oco.

As is customary, we then replace any adornments Fx, gk by simply f and, for example, write
RT (K, T,E) = RT 7, . (K, T, E)

and H]Zc(K7 T,E) = H}Z o (I, Ty B) for every i € Z (this is consistent with the definition for

(-adic fields given in §2.2). Note that this definition of RI'f(K, T, E) does not depend on the

choice of ¥, see [BMC24, Lem. 2.5].

(3.8) Lemma. One has canonical identifications

Sel) g /x ifi=1,
, Sel? ifi=2
E(K)[p>]"  ifi=3,
0 otherwise.
Proof. See, for example, [BF24, Lem. 1]. O

(3.9) Remark. Local Tate duality induces an isomorphism

RI'/¢(Qe, Tx/q) = RHomz, (RT ¢ (Qe, Tk /q), Zp)[—2] (25)

that is valid for every prime number ¢. This is a special case of the general result of [BF01,
Lem. 19] and, in the case at hand, can also be checked explicitly as in [BF24, Lem. 2].

4. Nekovar—Selmer complexes and weak main conjectures

The fundamental difficulty in deriving explicit statements such as Conjecture (1.1) from the
equivariant Tamagawa Number Conjecture is that the finite-support cohomology complex
RI'¢(K,T,E) is rarely perfect as an object in D(Zy[G]) (cf. [BMC24, Lem. 5.1] or [EN1S,
§4.1]). In this subsection we therefore construct auxiliary perfect Selmer complexes that ap-
proximate RI'(K, T,E).

Throughout this subsection we fix an abelian number field K with Galois group G = G =
Gal(K/Q). For every place v of K, we denote the residue field at v by IF,,.
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4.1. Unramified cohomology

Write E for the reduction of ' modulo p, denote the group of non-singular IF,-rational points
on F by E™(IF,), and set

(Br/Eo)(Ke) = €D | (E™(F,) @72 Z,).

v|l
(4.1) Lemma. For every prime number £ there exists a natural number ny such that, if ¢ is
unramified in K, there exists an (ng x ng)-matriz Ay i with the following properties.

(a) detz (c)(Ark) - Zp[G] = € - Euly(o; ) - Z,[G].

(b) There is an exact sequence

0 —— Z,[G)P™ —2 7, (G —— (Ey/Eo)(K;) — 0.
In particular, we have the equality Fitt%p[G] ((E1/Eo)(Ky)) = £ - Euly(o, ") - Zy[G].
(c) If L is a subfield of K, then mg/r(Aprx) = AsL-

Proof. We abbreviate (a choice of) inertia subgroup of Gal(Q/Q) at ¢ to Z, := I%). If ¢ 1 p,

then we have an exact sequence (see, for example, the argument of [Kinll, Lecture 5, Lem. 5])

0 —— (Tr/q)™ o, (Tie Q)% —— (Er/Bo)(K) —— 0. (26)

This sequence may be used for the computation of the Fitting ideal because
(TK/Q)LZ = (TpE Kz, ZP[GDIZ = (TpE)IE Kz, ZP[G]

is a free Z,[G]-module of rank ny := rkz, ((T,E)**). (We have used here that ¢ is unramified
in K.) It follows that the Fitting ideal of (E1/Ey)(K/) is generated by

detz (1 — o, ' | (TxQ)™) = detz, (1 — 0, X | (T,,E)Zf)‘x:aé_l = Euly(a, 1),

which generates the same ideal of Z,[G] as £-Eul,(o, ') because £ # p. Upon fixing a Z,-basis
of (T,E), we therefore obtain an (n, x ng)-matrix Ay that represents multiplication by
1—o, on (T,E)% ®z, Zp|G] and has all properties listed in the lemma.

In the case { = p and E has good reduction at p, the claim follows from (the proof of)
[BMCW18, Lem. 4.4] (see also [BMC24, Lem. 6.12]). It therefore suffices to consider the case
that E has bad reduction at p. To do this, we first note that the reduction type of E (over K)
at v agrees with the reduction type of E (over Q) at p because p is assumed to be unramified in
K. If p is a prime of multiplicative reduction, then (E1/Eo)(K¢) = @,,(Fy ®z Zp) therefore
vanishes and so in this case the claim follows upon taking n, = 1 and A, = 1, and noting that
pEul,(0,') = p+ o, ! is a unit in Zy[G]. If p is a prime of additive reduction, on the other
hand, then (E1/Ep)(K¢) = @,), Fv. Now, the latter is isomorphic to IF,[G] by the normal basis
theorem and so we deduce that its Fitting ideal over Z,[G] is generated by p = pEuly(o, b,
and that we may take n, =1 and A, = p. O

4.2. Local finite-support cohomology
We define, for i € {0,1},

(B/E)E) =], (B E(K)

We will use without comment that if £ # p, then (E/E7)(Ky) agrees with E(Ky) = @UM(KU)A
because Ej(Ky) is pro-£. Note that the Tamagawa number |E(K,)/Ey(K,)| is independent of
the choice of place v | £ because K is an abelian field. For simplicity we therefore denote this
number as Tamg .
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(4.2) Lemma. Assume that p is unramified in K if E has additive reduction at p. Then the
following claims are valid.

(a) For every prime number £, there exists a morphism
pe: Dy = (E/E1)(K¢)[-1]
in D(Z,|G]) with D} a perfect complex of Z,|G]-modules that has the following properties:
(i) D} is acyclic outside degree one.

(it) D} admits a representative of the form [F' — F| for a free Zy[G]-module of finite
rank (here the first term is placed in degree 0).

(ii) One has ¥ps &(Detz, i (D})) = £ - Eul(5, ") - Z,[G].
(w) If £ is unramified in K and p{ Tampg ¢, then p; is a quasi-isomorphism.

(b) For every point Q in E1(K,), there exists a morphism
Pp.@: Dp o = Dy & (Zy|G][-1]) = RL'(Qp, Tk /q)
in D(Z,|G)) such that the restriction of H'(pp.q) to Zp[G] maps 1 to Q.

Proof. Write m for the conductor of K and m/ := mf~°9¢(™) for the prime-to-¢ part of m. We
can then define a Z,[G),]-algebra map j: Zy,[Gry| — Z,|Gr] by sending o, to &, (with &, as
defined before Theorem (2.10) in §2.3). Write je(Asx ,) for the matrix obtained by applying
Je to each of entry of the matrix Ay, from Lemma (4.1) and set E =7,k (Je(AE,,))-
Let ZY) C G be the inertia subgroup at £, and 7;: Z,[G] — Z,[G /] the natural restriction
map. It then follows Lemma (4.1) (c) that WZ(ANg) agrees with Ay := Ay k. The exact sequence
from Lemma (4.1) (b) therefore fits into a commutative diagram of the form

00— Z,[G)P" —2 s (G —— coker(jo(Ag)) —— 0

e e
NS

0 —— Z,[G/TO)%m LN Z,|G /IO — s (Ey/Ey)((K%)s) — 0.

The surjectivity of the dashed arrow follows from the snake lemma, and multiplication by
Je(Ay) is injective by [Bou74, Ch. III, § 8.2, Prop. 3| because

det(je(Arr,,)) = je(det(Agr,,)) = je(Buly(o, ') = £ - Euly(5, ")

is a nonzero divisor. Indeed, for this it is enough to prove that x(Euly(5, ")) = Euly(x(5, ")) is
nonzero for ever character y of G, which is true because the polynomial Eul,(X) has no root
of complex absolute value 1.

Note that (Eo/E1)((K*),) and (Eg/F1)(K¢)) agree if £ is not an additive ramified prime
because in any such case K and KZ¢ have the same residue field at ¢. If £ is additive and ramified
in K, then ¢ # p by the assumed validity of Hypothesis (1.2) (iii) and so (Eo/E1)((K%t)s) = 0.

e A .
Writing D} for the perfect complex [Z,[G]®" =% Z,[G]®"¢], where the first term is placed
in degree zero, in all cases we have therefore constructed a composite morphism

pe: D} = coker(A))[=1] = (Eo/E1)((K™)o)[~1] = (Eo/Ev)(Ko)[-1]
in D(Zy[G]). We also note that D} is acyclic outside degree one and that one has
Dety, (D) = det(Ay) - Zy[G] = € - Buly(6, ") - Z,[G).

It is then clear from the construction that D} has all the properties claimd in (i) — (iii).
Moreover, it follows from Lemma (4.1) (b) that py is a quasi-isomorphism if ¢ is unramified in
K and p{ Tamg . This proves claim (a) (iv), thereby concluding the proof of (a).
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To prove claim (b), we take p, o to be any map that makes the diagram

Z,[G)[~1] —> Z,[G[~1] & D} Dy

|
ll’—)Q | Pp,Q lpp
<+

Ey(Kp)[~1] — RT§(Qe, Tx/q) — (E/E1)(Kp)[-1] —
commute. O]

(4.3) Remark. If one wants to account for Tamagawa numbers, on can modify D} as follows.
Since p is odd, each quotient F(K,)/Ey(K,) is a cyclic group by the Kodaira—Néron Theorem
and hence (E/Ep)(Kp) is a cyclic Zy[G]-module generated by ty, say. We therefore have a
well-defined map Z,[G]/Tamg (Z,(G] — (E/Ey)(K,) induced by sending 1 to t,. We then
obtain a morphism
. ‘Tampg ¢

petam0: Dimam = [Zp[G] —— Z,[G]] — (E/Eo)(Ko)[-1]
in D(Z,[G]) by taking P(e],Tam to be the zero map and piTam the map that sends 1 to ty. If we
define D}, . == Dy @® D} 1, and pg Tam = p¢ D pr,Tam, then the modified complex D7 1, also
has all of the properties listed in Lemma (4.2) (a) as long as one replaces (iii) by

Upg 2 (Detz, 61 (Df ram)) = Ypg.2(Detz, 1 (D7)) - Ipy . .e(Detz, 61 (Df tam,0))
= (- Euly(6,") - Tamg ¢ - Z,[G).

o ® (Zp|G][—1]) one can then also adapt the construction made

By defining Dy, @, Tam = D} 1o,

in Lemma (4.2) (b).

4.3. Global finite-support cohomology

In this section we use the complexes from Lemma (4.2) to define an auxiliary Nekovai—Selmer
complex. To do this, let II be a finite set of finite places of K, fix @ € E1(K)), and define a
Selmer structure Fx 11,0 on TK/Q as follows. We take S(Fxm,q) = X UII, set

D; if ¢ € 1\ {p},
R Q) =9, " |
oo Q0T =\ 2 e 1 ey
0 otherwise,

and define iz ;; ,» to be the composite map

RF]:E,H,Q (Qv:TK/Q) - RFf(Qva TK/Q) — RF(QMTK/Q):

where the first arrow is pg, pp.g (both constructed in Lemma (4.2)), or the zero map as appro-
priate. If p is a good prime that ramifies in K, then by p, o we mean the restriction of p, g to
Z,|G][—1], so the map induced by sending 1 to Q.

To lighten notation, we then introduce the abbreviations

Dy o =RUg, oK, T,E) and Dgyx o = RHomgz, (D} g, Zy)[—3]-

The next result records the basic properties of these complexes.

(4.4) Lemma. Assume that E(K)[p] = 0. For every Q € Ei(K,), finite set ¥ O S(K) of
places of Q, and finite set 11 of finite places of Q, the following claims are valid.

(a) One has an inclusion
Fitty, () (H*(D% s.11.0)) < Fitty, 1o (HF (K, TpE)).
(b) Let F' be a subfield of K and define Q" := Trg/p(Q). Then one has

i p(Fitty, o, (H(Dk i) = Fitt), (¢ (H*(Dysmqr)-
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(c) Let ¥ be a finite set of places of K that contains X. Then one has an exact triangle

Drcnm RUf(Qe. Ti/q) — Drsvng — Pismg — Drenz) RUf(Qe, Tkyq)[1]-
(d) Ift €I\ S(K), then D 510 =D
Proof. At the outset we define

51.0c,H,Q = @ RF]:z,n,Q (Q€7 TK/Q)
LeTlU{p}

KS\{£). 1\ {£}.Q"

and pr1 == pp,Q © Pyerr pr, and note that the definition of D% s.no implies that there is an
exact triangle

ROk s, TpE) — Disg — Dheng — RU(Ok s, TpE)[1]. (27)

This combines with the definition of the complex RI'¢(K, T,E) and the octahedral axiom to
yield an exact triangle of the form

Dy smno — RI'4(K, TpE) — cone(pn) & @zez\(nu{p} RT#(Qe, T /q) — D;(,E,H,Q[l]'
(28)
Since the cone of the morphism prr and @zez\n RT'f(Qe, Tk /q) both have no nonzero cohomo-
logy in degrees greater than one, this exact triangle induces a surjection
HZ(D;(,E,H,Q) - H]%(K, TpE)‘
A standard property of Fitting ideals then combines with this surjection to imply the inclusion

claimed in (a). Similarly, the properties of Fitting ideals reduce claim (b) to the claim that
one has an isomorphism

HQ(D;{,E,H,Q) ®z,(Gx] Lp|GF] = HQ(D;(,E,H,Q’)'

Now, the triangle (27) combines with the assumption E(K)[p] = 0 to imply Dj s, 1y o is acyclic
in degree greater than two and so the desired isomorphism follows from Lemma (B.13) (a) if
we can demonstrate that one has an isomorphism

e L ~ e
Dy 1.0 @7,k ZolGrl = DEs g
in D(Zp[GF]). To do this, we first note that one has D} 5 ®%p[GK] Zp|Gr] = Dj o and

D; ®%p[GK] Z,|GF) = D}, as can be checked from Lemma (4.1) (c) and the explicit definitions
of these complexes. In addition, one has commutative diagrams

° PK.p, ° PK,
Di v.2 %, (6r) ZolGF] =8 B(K,)[-1] Dl ©7, 1) ZolGF] % (B/Eo)(Ky)[-1]
l: lTrK/F l: JVTTK/F
Dpypq —22— E(F,)[-1] Dy, (E/Eo)(Fy),

where we have introduced subscripts K and F' to emphasise the field of definition, and px ;0
and px ¢ denote the maps induced by pg g and pg ¢, respectively. The claimed property of
D¥% s 11, then follows by combining this with the triangle (27) and the well-known isomorphism

RIc(Ok 5, TpE) @7 1, ZplGF] = RT(Ops, T, E),
(see, for example, [FK06, Prop. 1.6.5(3)]). Claim (c) follows from (27) and the triangle
P RIH(Qr,Tx/q) = RTe(Ok sy, TpE) = RTe(Ok s, T,E) = @) RIF(Qr, Tr/q)[1]
te(2N\5) te(DN\5)
via the octrahedral axiom. Finally, claim (d) is a consequence of the fact that, if £ € I\ S(K)
(and so £ # p is a prime of good reduction that is unramified in K'), then the map py: D} —

RI't(Qe, Tk /q) is a quasi-isomomorphism by Lemma (4.2) (a) (iv) (cf. also the argument of
[BMC24, Lem. 2.5]). O
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(4.5) Lemma. Assume E(K)[p] = 0 and, for given Q € Ei(K,), consider the composite
morphism

,0;7@: CI.(,E — RF/f(Qp,TK/Q) = RHOH]ZP(RFJP(QP,TK/Q), Zp)[—2]

Pp. . .
%, RHomg, (D3, Zy)[—2] = RHomg,, (DS, Z;)[~2] & Z,[G][1]

— 7,|G[-1].

Here the first arrow is the natural localisation map composed with the morphism RI'(Qp, TK/Q) —
R (Qp, Tk q), the isomorphism is by local Tate duality (25), p;, o = RHomz,, (pp,q, Zp)[—2]
is the dual of the map p, g defined in Lemma (4.2) (b), and the last arrow is projection onto the
direct summand Zy|G]|[—1]. Then the map Hl(p;,Q) induced by p,, o on cohomology in degree

one coincides with the composite map
Pk (Q)
HY Ok 5, TyE) — H}f(Qp,TK/Q) 2 7,[G).

Proof. Using the (dual of the) representative of C s, constructed in Lemma (3.5), we have a
commutative diagram

0 — s Z,[G] ——— Z,[G] —— 0
J ipg,Q |#2n)
p—2.p y HY(Ok.5, TyE) —— 0,

where the first commutative square represents the morphism p, ¢ composed with the morph-
ism RT(Qp, Tk /q)[—1] = RI(Ok s, T,E) = RHomg, (Cy 5, Zy)[—3] (and p} 5 is the map
induced by pp g in degree two). By dualising, we therefore obtain the commutative diagram

¢

0 —— HY (Okx, T,E) y P s P
leJ(p;,Q) l%,@)“ J
0 ———— Z,[G] =——= 7Z,|G] — 0,

where now the second commutative square represents the morphism p; 0 (and (p; Q)O is the map
induced by pj,  in degree zero). In particular, H O(p;) o) coincides with the dual of H 2(pp.0)-
The claim therefore follows from the observation that H 2(Qp7Q) is the composite map

1
Z,1G) =% HYQp, Tic/q) — HX(Oks, THE)

so that its dual map is given by the composite
H (O 5, ToE) — H/lf(QpaTK/Q) = Hi(Qp, Tr/q)* — Zp[G).

Here the first arrow is the localisation map (followed by projection), the isomorphism is induced
by the pairing (-, ) /i, and the last arrow is evaluation at Q. O

4.4. Determinantal ideals

In this section we establish a connection between elements in the image of the map Og x

(defined before the statement of Theorem (3.6)) and the Selmer complexes D x 11,¢ introduced
in the last section. Our main result in this direction is as follows.

(4.6) Proposition. Assume that E(K)[p] = 0, fir Q € E(Kp), and let ¥ be a finite set
of places of K that contains S(K). If Il C X is a subset of rational primes that are either
unramified in K or at which E has multiplicative reduction, then for every

® & Deth[G](O].QE)il:
o t € [Tpery Anng, ) ((E/Eo)(Ky)) 7.
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eve (ngn(e—lEuu(&;l)—lNI%) Z,|G] + Z,|G)),
one has the containments
v-Pr(Orx(a),Q) € Fitt%p[a] (HQ(Ekz,H,Q))#a (29)
t-v-Pr(Okx(a),Q) € Z,[G). (30)

Before proving Proposition (4.6), we first establish an auxiliary result that concerns the maps

and 5}(7271'[’@ = 195.

/19 = 19 .
KELQ b K2me?

R0

(with b* the dual of the Z,[G]-basis b of T;/Q
Definition (B.2). N

Setting Dy 1 o = RHomg, (D}, 1 o:Zp)[—2] and dualising the triangle (27) gives an exact
triangle

from §3.2) defined as the relevant instances of

Ploc,I1,Q ° °
Dyeng — DK,E,H,QM- (31)

To state the next lemma below, we will make use of the isomorphism
Dety, (¢1(Ckx) ' = Detz (¢)(Dk xmq)” " ® Detz,jg)(Dhero)”
= Dety, i) (D snmq) (32)

Here the first isomorphism is induced by the the triangle (31) and the second isomorphism is
induced by the isomorphism

(®eenBv(ar)): Detz g1 (Dherg) " = Dety, () (Zp[G][—-1]) " = Z,[G]

with a, the canonical element of Detz, q(D7) that satisfies Jps o(ar) = £ - Eulg(or) (which
exists by Lemma (4.2) (a) (iii)).

[ ] (]
Disng — Cks

1

(4.7) Lemma. Let Q € E(K)). If E(K)[p] =0, then the following claims are valid.
(a) Put = [T, (¢ Eulg(o, ")) for brevity. Then the following diagram commutes.

)
Detz,c)(Ch )" —— H'(Okx, T,E)
(32)l2 linﬁler(.,Q)

9
Detz,q)(D¥ s Q)_l R, Qy[Gl.

(b) One has the equality Vi x 11,0(Detz, g (D;{,E,H,Q)il) =k x1e(Detz, g (D;{Z’H’Q)*l)#
and an inclusion

Fitt%p[c](Hl(DK,Z,H,Q)E/or) '0K,E,H,Q(DetZP[G](D}(,E,H,Q)il) - Fitt%p[c](H2(D}<,z,H,Q))-

Proof. Claim (a) follows from Proposition (B.7)(a) (i), applied for every Ev,,, and Proposi-
tion (B.7) (b) (combined with Lemma (4.5)).
To justify claim (b), we first note that, by Lemma (4.2) (a) (ii), the complex D} 1 o admits a

representative of the form [F' @ Z,[G] 990, | for some free Z,|G]-module F' of finite rank and

endomorphism 0 of F. In the following we set F' := F & Z,[G] and fix a Z,[G|-basis y1, . .., ys
of F' such that F is identified with @;_, Zy[G]y;.

Write [P % P] for the representative of C} y provided by Lemma (3.5). That is, P is
a free Zy[G]-module of rank d, say, with basis z1,...,24, and P = P’ @ (Txq)* with
P = @?:2 Z,|G)z;. From this choice of bases we see that, by (31) and the definition of
the mapping cone, that D} vy o is represented by [P % p ® F' LA F] with the first term
placed in degree one. Here ¢’ = —(¢ @ p') and & = —p? + 9 with p’ the component in degree
1 of the morphism p: Cf(,s — D} 1 0

We next recall from (3) that for every Z,[G]-module M we have a canonical isomorphism
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Homz, (M, Z,) = Homgy, (M, Z,|G))*. It follows that the complex 15;(727&62, which is iso-

F#,tr
morphic to the (shifted) Zj-linear dual of Dy o, can be represented by [F T pg

14t
F’ ¢—> P] with the first term placed in degree zero. Here the maps &’ U and ¢ U are

defined by means of the matrices that are obtained by applying the involution # to the trans-
pose of the matrices representing @' and ¢', respectively. This shows that 5;(72711,(2 admits a
standard representative in the sense of Definition (B.3) and so the inclusion claimed in (b) is
a special case of Proposition (B.10) (b).

17, tr 14t
To prove the remainder of claim (b), we note that the complex [F LRSI Y At P]

is a perfect complex of Z,[G]-modules that is both acyclic outside degrees one and two (this

uses that 9% and hence also &’ #’tr, is injective) and has vanishing Euler characteristic in

Ko(Z,[G]). We may then apply Proposition (B.7) (c) to deduce that

Y e — ) 7 ° _
ﬁK,E,H,Q(Deth[G](DK,E,H,Q) 1)# = ﬁK,E,H,Q(Deth[G](RHOIHZP[G}(DK,Z,E@Zp[G])) 1)
= Vx nm,0(Detz, ¢ (Dksmo) ")

as claimed. O

We can now give the proof of Proposition (4.6).

Proof (of Proposition (4.6)): We first explain how to deduce the inclusion (29) from Lemma
(4.7). To do this, we note that, as H}(K, T,E) = E(K) ®z Z, is assumed to be Z,-torsion
free, it follows from the triangle (28) that we have an identification

H'(Dgsm,0)tor = H° (COHe(ﬁloc I Q))tor

= ker{@e 1\ ZolGT™/ (e (Ag))) @ (E/Eo)(Ky)}
= ker {®66H G]/((Euly(6y)) —> @Ee (E/Ep) KZ)}
=D Annzpm<<Eo/E1><Ke>>/<€Eule<w>>>-

Here IT},q C IT denotes the subset of places at which E has bad reduction (in which case ny = 1
and je(Ay) = (Euly(d¢)), and we have used that any prime ¢ € 1T\ I},,q is by assumption un-
ramified in K and so does not contribute to the above kernel because py is an quasi-isomorphism
for any such ¢ by Lemma (4.2).

Before proceeding, it is convenient to first make a general observation concerning an ideal a of
Z,|G] that contains a nonzero divisor z. In any such situation one has

(0/Zy[Gla)” = ((Z,[Gle)" /') * = (@' Z,[G)/a™)F 2 Z,[G)/(ea™ ¥, (33)
where we have used the isomorphism a* = a™! = {y € Q,[G] | ya C Z,[G]} that is valid
because a contains a nonzero divisor (cf. [Bas63, Prop. 6.1 (4)]). From (33) we then conclude
that Fitt}, e ((a/Z,][G)z)Y) = (xa~1)#. This general observation applied with a and = taken to

be Anng, () ((Eo/E1)(Ky)) and (Euly(5, "), respectively, shows that Fitt), L) (H (5K,E,H,Q)¥or)
is equal to the product ideal

Heen (Buly(6,) - Anng, q((Eo/E1) (Ko)~ 7
bad

Now, the factors (Euly (G, 1) cancel with the corresponding factors in the definition of the
element 77" from Lemma (4.7), and so Lemma (4.7) (a) implies that

(ngnbadAnan[G} ((Eo/E1)(Ky)™ ) - Pk (Ok s(a),Q)
is contained in

(H (Euly(5, 1)) - Fitt, e (HQ(ﬁk,E,H,Q))#
EGH\Hbad
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It now only remains to observe that, for every £ € Ilpaq, one has that Anng ()((Eo/E1) (K 0)) b
contains £*1Eulg(5z—1>leI%)Zp[G] + Zp[G] because Anng, q((Eo/E1)(Ky)) is generated by

Euly(6¢) and the augmentation ideal I (I%)) as a consequence of Lemma (4.1) and the as-

sumption that Il,,q contains no additive primes. Since I}f) is trivial for any ¢ € 1T\ II},,q by
assumption (and so EilEulg(&g)leI(z) Z.,|G) + Z.,|G] simplifies to £~ Euly(6,) 1Z,[G] for such
K

?), this concludes the proof of (29).

As for the proof of (30), this follows from a very similar argument and so we only provide a
sketch. Using the complexes defined in Remark (4.3), we may define a modified Nekovai—Selmer
structure Fgﬁﬁr}Q by taking S(}gﬁ{b) =X UII and

DZ,Tam il ell \ {p}a
D;7Q7Tam if ¢ =pell,
Zp|G][-1] ifl=p &Il

0 otherwise.

Now, if we set ni™™ = [, (Tampg ¢ - £ - Elllg(O'Z_l)) and Do = RffgaﬁnQ((’)Kz, T,E), then
the argument of Lemma (4.7) (a) shows that we have a commutative diagram of the form

(€]
s Hl(OKE?TPE)

Dety,jc)(Cx) ™"
|= [P
~ Tam
DetZP[G] (RHomZp (DTama Zp) [_3])71 0 QP [G]a

where the map is defined as the relevant special case of Definition (B.2). In addition, the
argument of Lemma (4.7) (b) shows that

Fitt), () (H" (Dram)ior) - (im0™™)# C Fitt) ) (H* (D)) € Zp[G].

Q9Tam

tor

The inclusion (30) can therefore be proved in exactly the same way as the inclusion (29) once
we have observed that H'(Dram )tor identifies with

@zenbad (Anng, () ((E/Eo)(Ky))/(Tampg ) @ (Anng, ¢((Eo/E1)(Ky))/((Euly(6y))). O

4.5. The proof of Theorem (1.4) (b)

In this section we prove Theorem (1.4) (b), our main result towards the ‘weak main conjecture’
of Mazur and Tate. If the Euler factors Euly(,)~! are invertible in Z,[Gmyn] for all prime
divisors £ of m and the element £,,,» from Theorem (2.10) is in E;(k)), then this is a straight-
forward consequence of Theorem (3.6) and Proposition (4.6). However, this will not be the
case in general and so a more detailed analysis is required in order to prove Theorem (1.4) (b).
This will be done in the rather technical Lemma (4.9) below, where we will use the Euler
system norm relations in order to prove that the denominators arising from factors of the form
Euly(,)~! can be ‘absorbed’ by z}ate.

Before stating this result, we first give a different characterisation of the set of prime numbers
C’(Xp)(K) that was defined in Remark (1.5) (c).

(4.8) Lemma. A prime number £ # p belongs to C(Xp) (K) if and only if Euly(6¢) € Zp[G]*.

Proof. Let G®) C G denote the p-Sylow subgroup of G and set A := G / G®). We then write A
for the group of all characters x: A — (ETPX and let O be the unramified extension of Z,, that is

generated by the values of all x € A. An element of Z,|G| is then a unit if and only if it is a unit
in the integral extension O[G] of Z,[G]. Now, one has a decomposition O[G] = @X cA o[GW®)]

induced by the isomorphism O[A] = @Xeﬁ(’), z + (x(x))y. Each O[GP)] is a local ring with
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maximal ideal (p, [ g ), 80 this argument proves that an element x of Z,[G] is a unit if and
only if x(z) # 0 mod p for all x € A. To prove that Euly(6,) € Z,[G]* if and only if ¢
satisfies the explicit condition given in the definition of C(Xp ) in Remark (1.4) (c) it now suffices

to prove that the set {x(d¢) : x € 3} coincides with the group of fl(f/)Q—th roots of unity of

@X. For this it is in turn enough to prove that the order of (64),. in G is equal to the residue
degree of £ in K/Q or, equivalently, the order of (o)), with K " the maximal subextension of K
unramified at £. To do this, we write m for the conductor of K and set M := mf~°"9¢(™)  Then
K’ = KN Fy; so that the restriction map induces an isomorphism Gal(F,,/K) = Gal(Fy;/K').
Given this, it follows directly from the definition of &, that a power ;' belongs to Gal(F,/K)

if and only if o} belongs to Gal(Fy/K'), as required to prove the claim.

O
To prepare for the statement of the next result, we write the conductor of K as mp™ with m € IN
coprime to p and n € Zxg. Given a subset £ C Sppn, we set (mp”) ¢ = mp"-([[c & gorde(m))—1
and 50 = Zﬁ;ﬁ)z' Write Fy == F| and G ¢ = G| We also define the following
sets of primes,

mp") g mp")

Z(K) = {¢|mp" : L4 N,0 ¢ CP}
Y(K)={l|m:teCP.
For further ease of notation we write N, = N - p~ ordp(N) and define

ey, = [I ®ul(@) ™ vl € QylGompn].

ANy, 15 (K)

(4.9) Lemma. Assume p is unramified in K if E has additive reduction at p, and suppose
(a.2) 2c 2 (mpr) 15 a collection of ideals ay C Zp|G 2] with the property that

(pPEuly (o, ') 2 ey, - Py, (2570, Trp, 6, (Q)) € ay (34)
for all Q € Ey(Fp,p). Then

0
(1= entX" € (L o) T 156 iy gy 82N P i) € Lyl (35)

If apy #1 mod p and p is either of good reduction for E a prime of potentially good reduction

for E, then the same conclusion holds with (1 — e;)0MT replaced by X7 .

Proof. This is an extension of the argument used by Otsuki in [Ots09, Lem. 4.2].
At the outset we note that, by Lemma (4.8) the Euler factor Euly(6y) is a unit in Z,[G] for a
prime number ¢ | m if and only if £ € #(K). In order to simplify some statements later on it

is convenient to set V(Z)n =1if | N and £{m. From the equation
(1-— )(9%[5;1 =(1-e;) H Euly(60) - I/T(n;) )# . PFmpn (yﬁ?o,’ﬁ n)
LESm
- 0),
[T Eule@ )t vob) - P (K30 (1 — er ) mgn),

EESmNp
proved in Theorem (2.10) (a), one sees that it is enough to prove that
- o),
( H Eul,(a, h=t. I/,(ng,j&) * PEpn (27}7{1;510» (1 —er)tmpn) € Z agNE, n/Fy-
€SN, \¥ (K) ZC¥(K)
By Theorem (2.10) (e) we can write, for each prime ¢ | m,

Eulg(&g)fly(e)n = oy + ﬁgElﬂg(&g)ilN

mp )

FASON
mp
with suitable oy, 8y € Z,[Gmpn]. For any subset £ of Z(K), we then define Zg to be the
subgroup of G,,» generated by I,Sf])[,n for £ € £ and note that Ty = [[,c» Iff;n because the
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{4 Ce .
I,(n;n are disjoint. As a consequence, we also have N Fppn [Fep = [Lice NI(e)n.
mp

We can then write
T s 11 (0).#
(HeesmNp\cv/(K)Eul‘f(Uf ) V) = (Hze 2 K)Elﬂé(‘fz )T Ut ) S KN,
- # # ~—1y—1
= (Hzeff(K)(o‘é + B Eulg(a, ) NIffi,n)) MmNy

= > Ag(]] Bul(a, ") )NE, . ry KN, (36)
LCH(K) e

with suitable Ay € Z,[Gmpn] and the sum ranging over all subsets of 2(K) (including the
empty set). We then calculate, by Lemma (2.7) (b, ¢), that for every subset .Z of Z(K)

Ng mpn [ Fep 73Fm,,n (2512207 (1 —e7)tmpn)
- PFmp" (COTeSFm n/F_g( Egto) (1 - eT)Emp">
:PFg(COI‘eSF n/Fg( ma tO) ﬁF n/Fg((l_eT)Empn)) 'NFmpn/Fg‘ (37)
In addition, by Theorem (2.10) (b), one has
(1 — e )mpn = Q + (pEul,y(0,)) 1P (38)

with suitable @ € E1(Fy,;») and P € Ei(F,,). For every subset .Z of 2°(K), we then have
PFz( TrF,,Lpn/Fg((]‘ - e‘r)emp”))
=Pry, (-, Trp, n/Fg(Q + (pEUIp(Up))_lp))
=Pry (- Trp, 0/ry (Q))
+ (pBuly(e, 1)) ™ PFayumy (NFz/qu{p}"TrFmpn/Fz(P))NIff;n (39)

because Pr,, . (-,-) is #-semilinear in the second component by Lemma (2.7) (b). Combining
(36), (37) and (39) we have thereby proved that

e ¢ ato
(H[GS Np \ﬂ( )Eulg(o-e 1) 1 T(TL;? ) PFmpn (Z7IY<LPEL ) (]- - eT)Emp’ﬂ)

Z Algy( H Euly(5,')™") - nx N, - Pry (coresp, . /p, (2m wa2), Q)NE Fpopn /Fap
SCHK) e P\p)

with
Q if £ =0,
Ay = (pEulp(agl))*lg(p) Aoy and Qe i={Trg, . /r,(Q) ifp¢.2,
TrFmpn/F_cg(P) 1fp€$

In light of the Euler system relation coresr, .. k., (zmt0) = ([Tge A\{p} Euly(o, 1)) - 2580 we
have therefore proved that

(1 — 67)9i\n/lgn = chff(K)A:? . nK,Np : PF_cg( Kato? Qg) mp’ﬂ/F$7 (40)

and this combines with the assumption (34) to imply the claimed inclusion (35).

If a, # 1 mod p, then &,,» belongs to Ej(Fy,,n) by Theorem (2.10) (b) so that (38) holds
without the factor (1 —e,) and with P = 0. With this changed definition of P, (40) then holds
without the factor (1 —e;). Again considering the assumption (34) one sees that the second
claim of the theorem holds as well. O

(4.10) Remark. The proof of Lemma (4.9) shows that if p is a prime number with the property
that pEuly,(op) belongs to Z,[Gmypn]*, then (34) can be replaced by the simpler condition

MmNy * ,PF;f (Zfﬂato (1 - 67’) : TrFmpn/Fz (Emp”)) cay
in order for (35) to hold.
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We now give the proof of Theorem (1.4) (b).

Proof of Theorem (1.4)(b): Write the conductor of K as mp™ with p{ m and n € Z>o. By
Theorem (2.10) (d) we can write, for each ¢ | m,

~ \— YA ~ \—
Euly(57) v = a¢ + BEuly(5,) "N_)
mp™

with suitable oy, By € Zp|Gmpn]. Let £ be a subset of 2°(K). Using the element g n, defined
before Lemma (4.9), we now set

ERTON U(Sy \Z(K)) ifpe &

', = (pEul 1yy~1z(P) and Iy = {p} ’

Mz = (Bl (o, ), 7T s\ Z(K) ifpg .2

By construction, we then have
"y € HZEHg (E_lEulg(&[l)_lNIg;n ZpG) + Zp|Grgr)).-

Now, assuming condition (i) of Theorem (1.4), it follows from Theorem (3.6) that there is
agy € Detz, c,)(Ch, S(Fg))_l with ©p,, s(ry)(ay) = 25°. From the first inclusion in
Proposition (4.6) we therefore deduce that
Ny - Pry (257, Qz) € Fitt%p[GFg}(HQ(D%g,S(Fg),ng,QE))#
for every Q¢ = Trp, /p,(Q) with Q € Ei(F,p). Setting IT'y, := Iy U (S(Fnpn) \ S(Fg)),
Lemma (4.4) (d) moreover gives
2/ e _ 2/ 1e
H (DF$:S(F$)’H$,Q$)) =H (DF,sfvS(Fmp")ﬂ:g,Qz)’
This combines with Lemma (4.9) to imply that

MT -0 2/ e
(1 — 67—)0]( € WFmpn/K (ngff(]() Fltth[GFg](H (DFL/"yS(Fmpn),Hig,Qg))#Nzg)
.., 0 2/ 7e #
c WFmpn/K(Zipgg)(K) Fittz, (] (- (D0 8(Fpyn) .00 )

g 7TFmpn /K ( Fltt%p[cmpn] (Sel;)/,E/Fmpn )#) : (41)

Here the first inclusion follows from Lemma (4.4) (b), in particular from the fact that

2 e ~ 2 e
H Dk, 5Py M1 Q) @2 Gonpn] LplG2) = H (Dl 58,011,020 )
by Lemma (B.13) (a), and the properties of Fitting ideals. The second inclusion follows from
Lemma (4.4) (a) and Lemma (3.8).
We next note that, since E(Fyyn) has trivial p-torsion, the natural map H' (O (), E[p™]) —
Hl(OFmpn7S(K),E[pOO]) is injective and so restricts to an injection Sel, g/ — Sel, g/, n-

Upon taking Pontryagin duals, we therefore deduce a surjection Sel;)/ E/Fppn Selz B/K By a
standard property of Fitting ideals, the existence of this surjection implies an inclusion

WFmpn/K (Fltt%p[Gmpn] (Sel;:,E/Fmpn )) == Fltt%p [GK] (Sel;)/,E/Fmpn ®Zp Zp [GK])
g Fltt%p [GK] (Sel;iE/K),

WI:liCh com‘t.)in.eé with (41) to prove that G%T’# is contained in Fitt%p[GK}(Sel;;’ pyi) if K con-
tains no primitive p-th root of unity.

If ay # 1 mod p and E has potentially good reduction at p, then one can again use The-
orem (3.6) and Lemma (4.9) to deduce (41), (without the factor of (1 — e;)), and so we

conclude that H%T’# is contained in Fitt%p[GK}(Sel;/’E/K).
This concludes the proof of Theorem (1.4) (b). O

5. The multiplicative group

In this section we prove a number of auxiliary results that are concerned with the multiplicative
group Gy, and that will be key in the proofs of Theorem (1.4) (a) and Theorem (1.7).
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5.1. A cohomological interpretation of Otsuki’s points

Fix a finite abelian extension K of Q with Galois group G = Gal(K/Q) and consider the

— L LGal(@Q/K) . .
Gal(Q/Q)-module Zy(1)k/q = Ind (Q/Q) (Zp(1)). Upon fixing a prime number ¢ and an

embedding ¢, Q — Q, we may regard Gal(Q,/Qy) as a subgroup of Gal(Q/Q), and hence
Zp(1)k/q as a Gal(Q/Q)-module. Consequently, we have the complex

%0 = RT(Qr, Zy(1) k/q),

which is perfect as an object of D(Zy[G]) and acyclic outside degrees 1 and 2. Moreover, one
has canonical isomorphisms

H'(A% ) 2 K[ = ® KY and HY( %) = L
induced by the Kummer map and the invariant map of local class field theory, respectively.
The Euler characteristic of Ay, in Ko(Z[G]) is equal to —[Z,[G1PO ()] (cf. [Fla00, §5]),
and so Definition (B.2) provides us with a map

’19 E = 19A' @ DetZP[G} (AK 4) ! — Qp ®Zp /\

Write vy for the place of K that corresponds to the restriction of ¢y to K. If £ splits completely
in K, then vy defines a Z,[G]-basis of €, |, Zpv and hence Definition (B.2) also gives a map

1-1,(0) —%

Z,[G] ¢

2-1,(0) —

19K1€1v0 = 19;42(‘[,{1)0}: Deth[G] (A;(,f)_l - Qp ®Zp /\ZP[G] l

We moreover recall that, after letting L/Q denote another finite abelian extension that contains
K and setting G := Gal(L/Q), by [FK06, Prop. 1.6.5] one has an isomorphism

Al ®%p[g} Zy|G] = Ay (42)
in D(Z,|G]) that induces a map
pry i ¢ Dety (g)(A} )" — Dety, g)(A} )" @7, g ZplG] = Detz, ) (A% )~

If E has split-multiplicative reduction at p, Tate uniformisation induces an isomorphism F': ES
Gy, given by expg, ologa(l+ X) — 1 € Z,[X] (for details see, for example, [Kob06, § 3]).

(5.1) Definition. Suppose that E has split-multiplicative reduction at p. For every natural
number m coprime with p and integer n > 0, we define

lypr = F (T ) € FX c Hl(AF )

mp™,ug =

with the element Zy,pn from Definition (2.25). (Here we have used that pEul,(6p) = p — ) is
invertible in Zy|G| and hence that Typn belongs to Ei(Fppn ay,)-)

The following is the main result of this section.

(5.2) Theorem. Fiz a natural number m coprime with p and an integer n > 0. For every
prime divisor £ of mp™ at which E has split-multiplicative reduction the following claims are
valid.

‘ : : ¢ : . _
(a) If £ # p, then there exists a unique family (tﬁni,n)nem €lim Detz, (G, (A% pn’g) L

m

where the limit is taken with respect to the the maps prp e Rl
mp mpm
2 ¢ ~\—1 J4
ﬁFan" ’e(t'g’l;n) = Eulf(af) : Vﬁn;n

for allmn € IN. If K is a subfield of Fynpn in which £ splits completely, then moreover
(79K7€7U0 oprp n/K)(t(E)n) — —f_(orde(m)_l)Eulg(l)_l Q0

—

as an equality in Qp ®z, Ky, = Q) @7, Qg C Qp ¥z, KX
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(b) If £ = p, then there ezists a unique family (tgg;,n)nelN € @neﬂ\l Deth[Gmpn](AF Y 1
such that

ﬁOFmpn D (tT(TI’Z;n ) = [mpn

for allm € IN. If K is a subfield of Fypn in which p splits completely, then moreover
(VK pwo © PrE,, /i) (E gnj);") Ng./k(lm) Ap € /\ Kvxo

(Here the right hand side is viewed as an element of /\Zp[G KX via the isomorphism
/\ZP[G]KX = 7,[G) ®z, /\Z Ko)

The proof of this result will occupy the remainder of this section.

(5.3) Remark. The element [; A p = (pEul,(1))Lexpg(p) A p is a Z,y-basis of /\2Zp Q, and

so Theorem (5.2) (b) combines with Nakayama’s lemma to imply that tz(f;) is a Zp|Gpn]-basis

of Deth[Gpn](A},pn 7p)*1 for all n > 0. This is perhaps reason to more generally expect a direct
)

relation between tﬁﬁpn and the canonical basis of Deth[Gp }(A° I given by Kato’s local

np)
e-constant [Kat].

5.2. lwasawa theory

Fix a natural number m coprime with p and define the complex
}mpwj = Rlim A, b
ne]N
where the limit is taken with respect to the maps induced by the relevant instances of the
isomorphisms (42). Setting A,, = Hm Zyp|Gmypn], the complex Af, . is then perfect as
a complex of A,,-modules that is acyclic outside degrees 1 and 2, and one has canonical iso-
morphisms

1 2
HY (A3, o0 ) & L e and  HY(AY w0 ) = D7,
nelN v|l
In particular, since no finite prime splits completely in Fy, e, it follows that H? (Ampoo ) is a

A-torsion module and Definition (B.2) provides us with an injective map

. B 1-1,(0) .

ﬁmpoo,g = ﬂA:npooﬂg,@: DetAm (Ampw,é) ! — Q(Am) ®Am /\Am ’ Hl (Ampw,é)

where Q(A,,) is the total ring of fractions of A,,.
In the following result we write I(U) := ker{Z,[U] — Z,} for the (p-adic) augmentation ideal
of an abelian group U, and we use the notation () M for the r-th ‘exterior bidual’ of an
R-module M (see §B.2 for details). In addition, we recall that for any ideal a C A,, we can
naturally regard a** as an ideal of A,, via the injective map a** — (A,,,)™* = Ay,

5.4) Lemma. Fix a natural number m coprime with p and write D(e)oo C Gmpoo for the
mp P
decomposition group at £. Then one has

_ YA *k 1—117(5) °
Zy(1))7 - I(DY) ) ) HY (A o)

im (Y pee ¢) = (AnnAm( A

v|l

Proof. Since Dety,, (A7, . ;)71 is a free rank-one module and ¥,y ¢ is injective, the image
of Vppee ¢ is reflexive and so, by the argument of [Sak23, Lem. C.11], it suffices to verify the
claimed equality after localising at an arbitrary prime ideal p C A,, of height at most one.

To do this, we first note that A:npw,e is acyclic outside degrees 1 and 2 so that the argument
of [BS21, Prop. A.11 (i)] shows that Ar.npOO,e admits a representative of the form ) — P, where
P is a finitely generated free A,,-module and () is a finitely generated A,,-module of finite

projective dimension (that is placed in degree 1). The Auslander-Buchsbaum formula implies
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that the localisation @, of @ at p is of projective dimension at most one, and so there is an
exact sequence 0 — F; — Fy — @ — 0 with finitely generated free A;, ,-modules F and Fy. It
follows that Fy — Fy — P, is a standard representative in the sense of Definition (B.3) (with
respect to (0,2)) for the complex A ., ®%m Ay

To proceed, we first verify that the Matlis dual of the A, ,-torsion submodule of H 1(‘4;np°° o)y
coincides with (B, Zp(1))p- By Lemma (B.12) it suffices to compute Ext} (Hl(A:npoO 2)s Am)p
for this. To do this, we will use the convergent spectral sequence

By! = Exty, (H (A o), Am) = B = H(RHomy,, (A%, ., Am)).

Since A, p is a Gorenstein ring of dimension one, one has that Extf\m(—, Ap)py =0if i > 1,
and so this spectral sequence gives an isomorphism

Exty, (H' (Afpee o) Am)p = HO(RHoma,,, (A%, o Am))p
= (lim _H*(Qe, (Zp)F,,./0)),

(@MZP(U)p.

Here the second isomorphism is by (derived) local Tate duality [Nek06, Thm. 5.2.6] and the
final isomorphism follows easily from (classical) local Tate duality.

If p does not contain p, then the localisation of A,, at p is a regular local ring (see, for example,
the discussion in [BKS17, §3C1]) and hence, in this case, the claim follows from Proposi-
tion (B.10) (c) applied to the complex A1.np°°7€®%m Ay p and the computation of HI(A;npoo torp
above.

Furthermore, if p contains p, then the localisation of H? (Ampoo ;) at p vanishes by the general

mp> £/

1

result of [Fla04, Lem. 5.6] because H 2(Ampoo ;) is a finitely generated Zj,-module. Similarly,
Exty (H 1(A;npoo 0)s Am) = Zp(1) is a finitely generated Z,-module and so also vanishes when
localised at p. It follows from Lemma (B.12) that

Ethle(Hl(A;npoo,Z)7 Ay = HOIHA,,L(Hl(A;npoo,e)tor? Q(Am>/Am)p =0

so that H! (A}, ¢)p has depth 1 as a Ap, y-module. By the Auslander-Buchsbaum formula,
this implies that it is in fact a free, possibly zero, A, ;-module. Given this, the same proof as

Proposition (B.10) (c¢) works and shows the claim. O
Suppose that ¢ # p. In this case, Lemma (2.18) shows that the family I/T(n)oo = (1/,(2, JneN
defines an element of A,,. If we can prove that Euly(G,)~! - Vﬁf)oo belongs to the image of
Ympeo ¢, then it follows from the diagram
° _ I ¢ _ / Kk
Det,, (A o) 1 =5 (Anna, (@,Zp(1) - 1(Df))
PrpmpC>c> /Fpppn 190 , \Lﬂ—Fmpoo / Frpn (43)
Detz, [c,,,n 1(AF,,n.0) = Qp[Gmpr],

which commutes for every n € IN as can be checked using the explicit description of the maps
Dmpeo ¢ and ﬂ%mpn ¢ given in Lemma (B.5), that the first claim in Theorem (5.2) (a) is valid.

To prove that Euly(5,) "t - 1/,(72000 is indeed in the image of ¥,y ¢, [Sak23, Lem. C.11] allows us
to check the claimed containment locally at a height-one prime p of A,,,. To do this, let us first
assume that p contains p. In this case, then, Lemma (5.4) combines with [Fla04, Lem. 5.6] to
imply that (im0 0)p = Apyp. It therefore suffices to prove that Euly(,)~! - v, ( ) ~ belongs
to App and this will follow if we can show that Euly(G,) = £7*(¢ — 6) is a unit in Am p- Fix
a decomposition Gppe = A X I' with a finite group A and I" := Gal(Q({mp~)/Q(¢mp)), and
write A® for the p-Sylow subgroup of A. The discussion in [BKS17, § 3C1] then implies that
there exists a prime-to-p-order character xp: A — @X such that A,, , naturally identifies with

the localisation of Z,[im x,][A®)][T] at the prime ideal (p, Iz, fimxp),a® )- Since £ —xp(G¢)oy is
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not divisible by p in Afim x,][I'], we conclude that Eul,(6,) is a unit in A, , as claimed.

We next assume p C A,, is a height-one prime that does not contain p. By [BKS17, §3C1]
one then has that there exists a character xp: A — @X such that A,,, identifies with the
localisation of Z,[im x;] at one of its height-one primes, and [BB25, Lem. 8.23 (i)] moreover
shows that

Euly(o¢)Am, if x (IM) ) =1,
Anny (@ Zp(l))p = P P (Z
gltd Ay if Xp(Zppee) # 1.

Recall from Theorem (2.10) (e) that the element Eulg(@)_ly( ) belongs to the submodule

mpe
Ay + EUIZ(W)_lNIff;OOAm of Q(A,), and hence also to AnnAm(Zp(l))gl. In addition, we
know from Theorem (2.10) (d) that l/( )oo is contained in Iy = Apm-I(Dy, (Z) ~ ). However, one

moo

can explicitly check that the supports of A, /I O _ and A, / Anny,, (B, Zp(1)) are disjoint.
mp™>®
Indeed, if p is in the support of A, /I D). , then p = ker{A,;, = Z,[Gnp> /Dmp 15 Q00

for some character . Since (o) — ¢ # 1 we see that Anny,, (B, Zp(1)) contains an element
that is a unit in A, p, as required to prove the claim. We have thereby proved that

Euly(5¢) vl € (AnnAm(@vwzpu))*l Nyo ),
mp>®

= (amn,, (D), Zo(0) " Iy ),

for every height-one prime ideal p of A,, that does not contain p. Together with the earlier argu-
ment for primes p that contain p, this shows that Eulg(&g)*ly(f)oo isin (Anny,, (@vwzp(n)*l

mp
I(D%Lw))**, and hence in im(d,p~ ¢) by Lemma (5.4). This proves the first claim in Theorem
(5.2) (a).

Let us now turn to the the case £ = p and the proof of the first claim in Theorem (5.2) (b).
By construction, the elements [,,,» belong to the (1 — e, )-isotypic component of H' (A%, g np)
which, in particular, is torsion free. Since p is assumed to be a split-multiplicative prime,
Theorem (2.10) (c) (i) moreover shows that [ype = (lppn)nen is a norm-coherent family
with trivial bottom value. By the argument of [BD21, Thm. 3.8 (b)], applied to the com-

plex Cp. ®%m (1 — e;)Ayy, this implies that [, is in I;*(@ (1 —er)H' (A}, ). We

P,
mpoo

therefore deduce from Lemma (5.4) that [, belongs to (1 — e;)im(¥yp ). Now, one has a
commutative diagram comparing 00 , and Yy, as in (43), and so it follows that [,pn is
in the image of ¥pn p for all n € IN, as claimed in Theorem (5.2) (b).

This proves the first two claims in parts (a) and (b) of Theorem (5.2).

5.3. Descent calculations

To prove the remaining claims of Theorem (5.2), we will perform descent calculations similar to
those in [BKS17, §5]. In doing so we will, in particular, prove local analogues of the ‘Mazur—
Rubin—Sano’ conjecture from [BKS17]. We remark that, as our setting is entirely local, we
do not need to assume the validity of ‘global-to-local’ hypotheses used in [BKS17] such as the
conjectures of Leopoldt or Gross—Kuz’min.
Let L be a finite abelian extension of @ and K a subfield of L in which a prime ¢ splits
completely. We also fix a place wy of L above vg. Setting G = Gal(L/Q), H = Gal(L/K),
and Iy = I(H) - Zp|G], we then write
1 1 Ak,Z’IH

Bt H'(Aje)) = H'(A3, 0% ) Z,[C) H(A}) ©z,16) I~ I /(DY) I
for the relevant instance of the Bockstein map from Definition (B.16). This map has the
following explicit description.
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(5.5) Lemma. Suppose € splits completely in K. For every a = (av)yje € D, f(} = Hl(A}w)
one then has
B(LZ}K(a) = 3" (rec(apn) —1)57 1 € In/I(DY) I
ceGgk
with the local reciprocity map recy: Qp — Gal(Q?b/Qg) —» D(Le) C H and a choice of lift 0 € G
of o € G.

Proof. See [Bur07, Lem. 10.3] or [BKS16, Lem. 5.21]. O

Throughout the remainder of this section let K, denote the cyclotomic Z,-extension of K
and, for every n € N, write K,, for its n-th layer. We will write I' := Gal(K/K) and
[y, = Gal(K,/K) for the relevant Galois groups. If K,, has conductor mp™** for some t > 0,
we define

t(P) ( () )

K, = ermpn+t/K tmp’n+t
As the remaining calculations are subtantially different according to whether the prime ¢ is
equal to p or not, we now consider these two cases separately.

5.3.1. The case { #p

Let us first assume that ¢ # p. By enlarging K is necessary, we may assume that the decom-

position group D%i of £ in K,,/Q is equal to I';, for all n € IN. In particular, B%i /K defines a

map H! (A%, ) — Ir, /I . In order to apply Proposition (B.17) (c) in this situation, we need

to verify that pdy, g, (K, i) < 1 and pdy (K, )tor) < 1. (This will also verify condition
(85) by Remark (B.15).) The second inequality is clear because Z, is a discrete valuation
ring, and for the first inequality it is sufficient to prove that (Knxﬂjo)tor is I';,-cohomologically
trivial. The required cohomological triviality is however true because the extension K, ,,/Qy
is unramified (cf. [NSWO08, Prop 9.1.4]).

Proposition (B.17) (¢c) now shows that
4 L 4
(B 1 © o 0 D, 1)t ) = 9%, o(t5e) mod I3, (44)

as an equality in Anng, ((Q) )ter) ' @z, (Ir,,/If ). The right hand side of this congruence we
can compute, using Theorem (2.10) (d), to be

J4 ~ \— 4
We(ti) = F, e /K (Bule(G7) 1V7(n;n+t)
=t — 1)L e A=D1 —5,) mod I . (45)

(Note that Annz, ((Q, )tor) " is generated by (¢ — 1)~'.) Combining (44) and (45) we obtain
(5%31/;( 0 VK 10y © PTKn/K)(t%Ln) = (- 1)@ dm=(1 - 5) mod IZ,, (46)
which, by using the isomorphism
Iv, /1§, = 7,)[G] ®z, (I(T)/1(Tn)?),
we can regard as an equality in (¢ — 1)7'Z,[G] ®z, (I(T'y)/I(I'y)?). By taking the limit of the
maps ﬂ%i /i We may define a limit map
H' (A% ) = 2,[G) @z, (im _ (I(Tn)/1(T0)?)) = Z,|G] @z, T,

where the isomorphism is induced by sending (g — 1) — g for every g € I'. Passing to the limit
(over m) in (46), we then obtain

(Bicl i © Vo © P i) (HE,) = €0 = 1) e (7m0 (1 — )
= Lt —1)" @ ledm= (5, 1) (47)
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n (¢ —1)"'Z,[G] ®z, I'. Since ¢ is unramified in Ko/K, the composite map

X recy op—1

K" 7,0, T = 7,

agrees with ordy. This map restricts to an isomorphism on the torsion-free quotient of Ky,
and so Lemma (5.5) combines with (47) to imply that

14 —ordy(m —1\—
(Drcmo 0 Pl i)l ) = =LA — ) e,
as required to conclude the proof of Theorem (5.2) (a).

5.3.2. Thecase / =p

In the remainder of this section we consider the case £ = p. It then suffices to prove that

(VK p,vo © ern/K)(t%) = Npg,. /i (lm) A D.

As a first step in this direction, we combine Proposition (B.17) (¢) with the argument of [BKS16,
Thm. 5.10] to deduce that

Zaernaﬁ%n,p(t%) @0l = _(6%{/1( 0 VK pu © ern/K)(th;,)L) (48)

in Krp @z, 1G] (Ir, /1E,) with T, == Gal(K,, /K).

Recall that for any norm-coherent sequence u = (uy)p>0 € T&lnzo(zp Rz (9Fmpn)X there exists
a unique power series Col(X) € (Z, ®z Op,,)[X]*, called its ‘Coleman power series’, with the
property that

(0,"Col)(¢pr — 1) =u,  foralln > 1.

(See [Sha95, Ch. I} for details.)
In the following, we will use the maps

Ord,: @W)Kvx — Zp|G], aw ZaeG ordy (g, ),

Recp,Kn/K: @UkﬂKg — IFn/Ilg‘na atr—> deG(reCf(aavo) - 1)5713

and the induced isomorphisms

2 e =
Ord,: /\ZP[G] Ky = Ok, and Rec,f,/k: /\

2 X X 7,(G)

z,(c) Ky = p™rtl

(5.6) Lemma. Suppose u = (up)n>0 € l'glnm(Zp ®z OF,,n)* is a norm-coherent sequence
with N, /k(ug) = 1 and Col(0) € (Z) ®z O, )%. For big enough n, one then has

Zaer oNp, i, (Un) @ 0" = (Rec, g, /i © Ord, ") (N, /(Col(0)))

in Knp @z, (I, /If,)-

Proof. This follows from the main result of Bley and Hofer in [BH20] via the argument of
[BH23, Thm. 5.1]. For the convenience of the reader, we sketch this argument.
Observe that K* contains no primitive p-th root of unity because p is assumed to split com-

pletely in K, and hence that also each K, is Z,-torsion free by the general result of [NSWO08,
Prop. 1.6.12]. If we fix a topological generator v of ', then we may therefore use the argu-
ment of [BD21, Thm. 3.8 (b)], applied to the complex A% p» to deduce from the assumption

—_—

N, /i (uo) = 1 that the sequence v’ :== (Np, . k, (un))nen is divisible by v—1 in fm o Ky p.

Writing k£ = (kn)n>0 for the unique element of I'Lmnzo K;'p such that v = (y — 1)k, one then
has

dern"Nme/Kn (up) @0t =ro® (v — 1)
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by [BH23, Lem. 3.14]. To proceed, define the characters sy: I' = Zp,7* — a and sy ,: I';, —
Z/p"Z,~* — a mod p". Applying [BH20, Cor. 3.17] (see also [BH23, Prop. 5.2]) to the

Sy,n

character pyn: Gppeo — I' —= Z/p"Z, we obtain the equality

ordg, (kn) (8, oTecy o Np /x)(Col(0)))
i = p in @Ulp(Q/Z).

Now, ordg, (kn) = ordg (ko) because K, /K is totally ramified at p, and so taking the limit
(over n) shows that

ord,(kp) = —(sy orec, o N, /i )(Col(0))) in | Zy.
vlp

—

In addition, local class field theory implies that the group of universal norms (), N, /x (Kr )
is equal to @MP p%», on which Ord,, is injective. Since kg clearly belongs to this group and the

same is true for the image of the isomorphism /\2ZP[G] Ky = pZrlGxl induced by Rec, k. /i
(cf. the general result of [BB25, Lem. 2.17 (ii)]), the last displayed equality in fact implies that

ko® (y—1) = —(Ord, ' oRec, , /1) (Np,, /1) (Col(0))) = (Recy, k, /1 0Ord, ) (N, /1 (Col(0))),
as claimed. O

Write Col(X) € Z,[X] for the Coleman power series associated to the norm-coherent sequence
(Lnpn)n. Then Lemma (5.6) combines with (48) and Lemma (5.5) to imply that

(Recy,c, /i © Ordy ) (N, i (Col(0)) = D~ o, ,(t8)) @ 07!

= —(Recp,Kn/K 0 VK pug © ern/K)(t%i)

in Knp ®@z,(Gx, | (Ipn/Ilgn). Note that the outer terms in this equality belong to the image
of K% RZ, G, (Ir, /I ) = K% ®z, (I(Ty)/I(I'y)?) so that we can regard this as where the
equality takes places. Taking the limit over n, the map Rec, g,/ defines an isomorphism
/\ZZP e Ky = p%lGl @y (I(I)/I(T)?) so that from the last displayed equality we can deduce
that

Ordy (N, /e (Col(0)) = ~(Pic g © P, /1) (1)
Now, by definition of Z,,,» (Definition (2.25)) one has

Col(X) = expg,, ologz o Z ((Z hya(X) —5 X) +5 (pEuly(0p)) 'eq))

moldlm  XF#T
= Y (O (expg,, 0gx.a(X)) —a,, (expg,, ologz)(X))
moldlm  X#T
+6,, (PEuly(0,)) " expg,, (Cap))
and so we deduce that

Col(0) = (pEulp(ap))_1 expg,, (Z
The claim now follows from the equality Ord,(Ng,, /x (bn) AP) = —=Np, /() because the map

Cdp) = Ilm.

mo|d|lm

Ord,: /\2Zp[G} Ky — (Zy, @z Ok)* is an isomorphism.
This concludes the proof of Theorem (5.2). O

6. Nekovai—Selmer complexes and exceptional zeros

In this section we establish Theorems (1.4)(a) and (1.7). The proofs involve an auxiliary
Nekovar—Selmer structure, introduced in §6.1.1 and studied further in §6.1.2, where we de-
scribe the associated Nekovar—Selmer complexes and their cohomology. After some preliminary
constructions of §6.1.3 concerning the determinants of these complexes, we first prove The-
orem (1.4) (a) in §6.2 before turning to the proof of Theorem (1.7) in §6.3.
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6.1. Consequences of Tate uniformisation

If E has split-multiplicative reduction at the prime ¢, then Tate uniformisation gives rise to an
exact sequence (cf. [Sil94, Prop. 6.1])

0 —— Zy(1) —— T,E Z, 0 (49)
of Gal(Q;/Q¢)-modules, which induces an exact triangle

RI(Qe, Zy(1) i /q) TN RI(Qe, (TpE) k/q) LN RI(Q¢, Zp, k/q) — RI(Qe, Zp(1) k@) (1] (50)

(6.1) Remark. For later use we note that the connecting homomorphism Z, — H(Qg, Z,(1))
arising from the exact sequence (49) sends 1 to the image of the ¢-adic Tate period ¢ of E

under the Kummer map Q; = H'(Qy, Zp(1)).

6.1.1. Definition of a useful Nekovai—Selmer structure

We now use the triangle (50) to define a useful Nekovai—Selmer structure. To do this, we fix
Q € E(Kp) and a finite set II of primes at which E has split-multiplicative reduction. Write
[T am and Ilyy,, for the subsets of II (resp. of IT \ {p}) comprising primes which are ramified
and unramified in K, respectively. We further let 3 be a finite set of places of @ that contains
S(K).
We define a Selmer structure }';I?HQ with S (]-';I?HQ) = 3 as follows.

o If v € Il4n, then we let RF}-;I?H,Q (Qu, Tk )q) = RI'(Qu, Zp(1) g /q) and take if;)nvv to be

the map g, from (50).
o If v € Ilyy,, then we we define RI ]:;JI,)H,Q(QU’ Ty /Q) and 17 FPow by means of the triangle

i sp
Iy

RF]:;)I?H,Q(QU’TK/Q) —=, RI(Qy, Tk /q) — RHomz, (RI'(Fy, Zy(1)), Zy)[—2] —
Here the last arrow is the map

RT(Qu, T /q) Loy RT(Qu, Zyx/Q)
— RHomgz, (RT(Qu, Zp(1) k/q), Zp)[~2]
— RHomz,, (RI'(IFy, Zy(1) k/q), Zp)[—2],
defined as the composite of the map h, from (50), the canonical isomorphism induced by
local Tate duality, and the inflation map RI'(IFy, Zp(1) k/q) — RI(Qu, Zp(1) k/q)-
e If v = p is unramified in K, then we define RT’ o (Qu, Tg/q) and i FPw by the triangle

1 -Sp
Iy

Rz (Qu, Tk /@) —% RI(Qy, Tk /q) — RHomg, (D2 o, Z,)[~2] = |

where Dp 5 is the complex defined in Lemma (4.2) (b) and the second arrow is the
composite of the natural map RI'(Qu, Tk q) — RI'/¢(Qu, Tk/q) and the map Pp =
RHomz, (pp,q, Zp)[—2] dual to the morphism p;, o from Lemma (4.2) (b).

e If v = p is ramified in K and does not belong to II, then we define RF]:;:P,I_LQ (Qu, Tk /q)
and ¢ FPw by means of the triangle

1 -Sp
Iy

RT 7, (Qu,Tijq) — RO(Qu, Tiq) — Zy[G)[-1] — RUpr (Qu, Ti/q)[1):

Here the second arrow is induced by Pk (-, Q) (equivalently, the composite of the natural
morphism RI'(Qu, Tx/q) — RI'/¢(Qu, Tk q) with the dual of the map Z,[G][-1] —
RI'¢(Qu, Tx/q) that sends 1 to Q).
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e In all other cases we take RFf;pHQ(QU,TK/Q) = RI(Qu, Tk/q) and iz ., to be the
identity map. o 7

(6.2) Lemma. Let (3,11, Q) be as above. For every place v of Q, the complex RI’J_—;pH o (Qu, Tr/q)

is perfect in D(Zy[G]) and acyclic outside degrees one and two.

Proof. In all cases perfectness is a consequence of the definitions and the general result of
Flach [Fla00, §5]. The claim regarding acyclicity is clear in all cases apart from when v = p
is unramified in K. To justify the claim in this remaining case, we write p for the composite
of the map p;, o and the map RI'(Qp, Tx/q) — RI(Qp, Tk/q). By definition of ]:;F,)H,Qv one
then has RF;;;?H’Q(QU,TK/Q) = RHomg, (cone(p), Zy)[—2] and this isomorphism gives rise to
a convergent spectral sequence

By’ = Bxty, (H I (cone(p)), Zy) = B = HZ™ (Qp, Tic/q)-

Since Extin(—, Z,) = 0if i ¢ {0, 1}, this spectral sequence reduces us to proving that
(i) H'(cone(p)) =0ifi ¢ {0,1,2},
(i) H?(cone(p))
(iii) H°(cone(p))
By its definition, the complex D}, = Zy[G][—1] & Dy is acyclic outside degree one and so
claim (i) follows from the long exact sequence in cohomology induced by the defining tri-

angle for cone(p). Moreover, this long exact sequence gives an isomorphism H?(cone(p)) =
H?(Qyp, Tk /q) and hence proves (ii) because H*(Qp, Tk /q) = Do (E(Ku)tor ¥z Z,)" is finite.
To prove claim (iii), we recall that the map H'(p) is defined to be the composite of H'(p, o) and
the Kummer map E(K,) — H'(Q,, Tk/q)- Now, by definition of p) g one has a commutative

diagram

is Z-torsion,

is Z,-torsion free.

0 —— Z,|G] —— H'(D} ) — HY(Dj) —— 0
[0 |0 |

0 — Ey(K,) —— BE(K,) —— (E/E1)(Kp) —— 0
in which the the rightmost vertical arrow is an isomorphism by Lemma (4.1) because p is
assumed to be unramified in K. The snake lemma therefore implies that H(cone(p)) =
ker H'(p, o) identifies with an ideal of Z,[G], and hence that it is Z,-torsion free, as required
to verify (iii). O
6.1.2. A computation of Nekovai—Selmer groups

The cohomology of the Nekovdi-Selmer complex associated to Fg 0 has the following im-
portant properties.

(6.3) Lemma. For every triple (3,1I1,Q) as in §6.1.1 the following claims are valid.
(a) One has rkZp(H]l__;[?mQ (K, T,E)Y) > [Hyam| + rkZp(Sel;;E/Q).

(b) If E(K)[p| =0, then there is a surjection
2 2 ~ o
Hf%?n,Q(K’ TpB) = @eenmmH Qe Zp(1ke/Q) = Vit = @vle@eenmmzpv'
(c) If E(K)[p] =0, then H]l_.;,?H’Q (K, TyE) is Z,-torsion free.
Proof. To prove claim (a), we will show that dimq,(Q, ®z, H}sp (K, T,E)Y) is at least
3,I11,Q

ram| + dimg, HJ%(Q,VPE). To do this, we set F = }";I?H,Q, write H}ll(f)(Qp,TK/Q) for the
image of H!(RT £(Q,, Tk )q)) in HY(Q,, Tk)q), and define H/lh(f)(Qp, Tkq) to be the quotient
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Of Hl(Qp, TK/Q) by H}%,(]-') (Qp, TK/Q)-

Note that H I(Qg,TK/Q) is finite for every £ # p, and hence that the relevant instance of the

triangle in Remark (3.2) gives the exact sequence

Qp ®7, YK m — Qp ®z, H}E;H’Q(K, T,E) = H' (Ok 5, VpE) = Qy ®z, H}j, 7 (Qp, Tk /q)-
(51)

If we can prove that H}L(f)(Qp, TK/Q) contains H}(Qp, TK/Q), then exactness of (51) will show

that the image of the second arrow in (51) contains H}(K, V,E). Since H}(K, V,E)¢ =

H}(Q,V,,E) has the same Q,-dimension as HJ%(Q,VPE) by duality (cf. [BFO1, Lem. 19]),

taking G-invariants will then imply claim (a).

If p € Il,am, then we have defined H,i(f)(Qp, Tk q) to be the kernel of the map H*(h,,) induced

by hp. From the long exact sequence associated with the triangle (50) we deduce that the

kernel of H!(h,) is the image of H!(g,). Now, one has a commutative diagram

@1}|p ;{E E— @v\p E(K’U)/\
[ o

H(gp)
HY(Qp, Zy(1) i /q) —2% HY(Qp, T /q),

where the vertical arrows are the respective Kummer maps and the top arrow is induced by
Tate uniformisation. This shows that H}%(J__) (Qp, Tr/q) = H}(Qp, Tk /q) in this case, as desired.

If p & Iam, then Q,®z, Hill(]_.) (Qp, Tk /q) is by definition the orthogonal complement of Q,[G]-
@ with respect to local Tate duality. Since ) was chosen to be an element of H}(Qp, Vi /Q),
which is its own orthogonal complement, it follows that Q, ®z, H }IL(f)(Qp,TK/Q) contains
H}(Qp, Vik/q)- This concludes the proof of claim (a).

As for claim (b), by definition of the Nekovdi-Selmer structure Fyp o and the octahedral

axiom we have an exact triangle

RIe(Ok s, TpE) = Rl (K, TpE) = EBZEERFPP

,I,Q

(QZ) TK/Q) —

which, since H3(Ok 5, TpF) & (Zy @7z E(K)tor)” is assumed to vanish, induces a surjection

2 2 2
Hysp (K, TpE) > @%ZH_F;P”H?Q(QZ’TK/Q) —» @EEHMH (Qe: Zp(1) i /)

as claimed. Finally, claim (c¢) follows from the exact sequence (obtained from the relevant
instance of the triangle in Remark (3.2))

0— @venmmzpu - H};ITEQ(K, T,E) — H (Okx, T,E)
and the fact that H'(Ok x, T,E) is Z,-torsion free if E(K) has no point of order p. O
We now write (Fgiy; )" for the dual Nekovai-Selmer structure of Fip;  (as defined in Re-
mark (3.4)) and define a complex as
SC;(,E,H,Q = RHOH]ZP (RF(]:;?HQ)* (K, TpE), Zp) [—3]
This complex is described in a little more detail in the following result which is an analogue of
Lemma (3.5).
(6.4) Lemma. For every triple (3,11,Q) as in §6.1.1 the following claims are valid.
(a) SC¥ snq is a perfect object of D(Zy|G]) with Euler characteristic
XZP[G](SC}(,E,H,Q) = [Zp[G]]-
(b) There is a canonical isomorphism H'(SCk s 1) = Hypw (K, T,E). If E(K)[p] =0,
) k) 7 Z,H,Q
then there is also a split-exact sequence of Z,|G)-modules

0 —— His
3,10,

Q(K, TyE) —— HQ(SC}(727H7Q) s TF

. 0, (52)
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and SC¥% . 11 18 acyclic outside of degrees zero and one.
(¢) In D(Z,|G]) there is an exact triangle

SCkemo — Cks — @UGZRF/F;H’Q(QMTK/Q) — SCk . melll- (53)
Proof. The triangle (53) in claim (c) is obtained by dualising the triangle
RTo(Okx TpE) = RE(zp )+ (K, TyE) 5 (D), Rz - (Qu,Trjq) = (54)

that exists by the definition of ]:;I,)H,Q and the octahedral axiom. As a consequence of (53),
we deduce that SCi 5,11 is perfect and has Euler characteristic —[Z,[G]]. This is because
the complex C, s, is perfect with vanishing Euler characteristic (cf. Lemma (3.5) (a)) and each
complex @veER’F IR0 (Qu, Tr/q) is by construction perfect and has vanishing Euler charac-
teristic if v # p resp. Euler characteristic [Z,|G]] if v = p (as follows from the computations of
Euler characteristics in [Fla00]). Having thereby proved claim (a), we now turn to claim (b).
Firstly, Artin—Verdier induces a canonical exact triangle

RUzee o (K, T,E) = SCk g = (Tk/q) T [-2] —, (55)
and this directly implies the first part of claim (b). Assuming now that E(K)[p] = 0, the
isomorphism H3(Ok 5, TpE) 2 (E(K )tor®z2Zyp)" shows that RI'.(Of 5, T, E) is acyclic outside

degree one and two. From the triangle for Fg'yy , analogous to (54) and Remark (6.2) we
therefore see that RFF;pH Q(K ,TpE) is acyclic outside degrees one and two. Given this, the

triangle (55) implies both that SC¥% ».1m,¢ is acyclic outside degree one and two and that one
has the exact sequence (52), which is split-exact because (T /q)" is a free Z,[G]-module. This
concludes the proof of claim (b). O

6.1.3. Determinants and passage to cohomology

Let (X,II,Q) as in §6.1.1 and recall the basis bg of T;
Lemma (6.4), Definition (B.2) provides us with a map

/Q defined in §3.2. In light of

Frs1,Q =980, o 1 oufbic) * D€z, (SCk zig) ™ — QplG).
We next define a composite isomorphism frx x 0 as
Detz,(q)(Chs) ™" = Detz,(a)(SCkzno) ' @z,6 Q) Detz,ic)(RTzp, ,(Qn Tre/o)) ™!
LellU{p}
— Detz,(c)(SCk £mq)
where the first arrow is the isomorphism induced by the triangle (53) and the second arrow is

id ® (®renufpyEva,) with 2 defined as follows.

e For any prime number ¢ € 1T\ (IT;am U {p}, the complex RI'(Fy, Z,(1)/q) can be rep-
resented by

2,l6) =" 7,(6).

We may therefore define a canonical element sy == idz [G)®1 of Detz, g (RT'(Fy, Zy(1) i Q)

that satisfies ﬁRF(Fpr(l)K/Q)yg(SZ) =1—(¢"1oy = Euly(oy). Given this, we define z, as

the image of sy under the isomorphism

Detz, )R 7 (Qe: Tk /q)) = Dety, (o) (RHomz, (RT(Fy, Zy(1) /@), Zp) [=2])
= Dety, () (RT(Fe, Zp(1) i /q)) %
that is induced by the isomorphism (3).
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e If / € I1,., then we we use the element t%) from Theorem (5.2) to define z; as the image

of (—1)1e(®). tg? under the isomorphism
Detz, i) (R zp Qe Tijq)) = Dety, ja)(RT(Q; Zy i /q))
= Dety, (o) (RT(Qe, Zp(1) k) 7.

Here the first isomorphism is induced by the triangle (50) and the second isomorphism
by local Tate duality (24) and the isomorphism (3).

e If p is ramified in K but not in II, then we take x, to be the element corresponding to
idz, (¢ in Detz,q)(RT 7p (Qu, Tk /q)) = Dety, ja)(Zy|G][-1]) = Z,[G]".

o If p is unramified in K, then we let x, be the unique element of
Detz, q] (RF/]-‘;"’HYQ(QA Tx/q)) = Dety g)(RHomgz, (D3 o, Zp)[—2]) = Dety, g (Fpg) "

}(x#) = pEuly(0},) (which exists by Lemma (4.2) (a) (iii)).

The following result gives an explicit description of the map Fx s 11,0 © fx,x 11,0

with Vps  fidg,

(6.5) Lemma. Let K be a finite abelian extension of Q of conductor mp™ with m € IN coprime
to p and n > 0. For every a € Detz (g (C’kz)_l one has the following equality in Q,[G].

(Frezmoo frezm)@ = ([T, v ([, Be@ )™
: (pEulp(agl))‘lp”(”) -Pr(Okx(a),Q). (56)

Proof. In the case that p & Il;am, this is a consequence of Proposition (B.7) (a). In the case
that p € Il.am we note that 1 — ey acts as the identity on both sides of the claimed equality,
and hence that we may verify this equality over (1 —eq)Q,[G]. Since in D(Q,[G]) we have the
isomorphism

(1 = e)Q[G) % ¢ RUQ Zy(1icj) = (1 = 1) QG @216 H' (@ Zy(Dicj))[ 1]
= (1- e1)Qy[G][-1),

the claim again follows from Proposition (B.7) (a). O

6.2. Bounds on the order of vanishing of Mazur—Tate elements

In this section we prove the following result, thereby also establishing Theorem (1.4) (a).

(6.6) Theorem. Fix an abelian number field K and write the conductor of K as mp™ with
m,n > 0 integers such that p{m. Suppose that the pair (K, p) satisfies Hypothesis (1.2). Then
one has the inclusions

ell\é[T c I(G)rp+sp(mp”)+20(p)(K)

and
MT OGNS (0)\\2

Proof. Our approach in this proof is to apply Lemma (4.9), so we begin by verifying the
conditions required for this.

If p € I am, then we take Q = (1 — eT)TrFmpn/K({%mpn). If p € I;am, then we let @ be an
arbitrary element of E1(K)).

By Theorem (3.6), there exists an element 3x x; of Deth[G](C;(’Z)*l with the property that

Okx(3xyx) = 2K, By Lemma (6.5) one then has

_ (© 1\l
(Fieznq o frene)6rs) = (e v ™ (1o B0 )

- (pEuly(0, 1)) "t ) P (Kt Q). (57)
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Now, from Lemma (6.3) (¢c) we know that Hl(SCkE’H’Q) is Z,-torsion free if H(Ok x, TyE)
is. The computation of the Euler characteristic of SC¥% s o in Lemma (6.4) (a) combines
with the exact sequence (52) to show that H2(SC;(7E7H7Q) ®z,(c) Zp has the same rank as
Hl(SC}QZ,H,Q)G. From Lemma (6.3) (a) we therefore deduce that

Fitt, i (H*(SCk s.11.0)) € Fittg, () (H*(SCh £ 111y (@) @2pl0) Zp) € L(G)Tmlre(58)

with ) = rkz, (SelXE/Q). In addition, the surjection in Lemma (6.3) (b) implies that

Fitty, o (H*(SCk s.m.0)) C Fitty 1) (Yi M) = ngnramI(D%))~ (59)

We next combine these observations with Proposition (B.10). By Lemma (6.4) we may apply
[BS21, Prop. A.11(i)] to the complex SCY ;11 o in order to deduce that it admits a standard
representative in the sense of Definition (B.3). Given this, it follows from Proposition (B.10)
and the inclusions (58) and (59) that

(Freng o frzmne)Grs) € Fitty, 6(H*(SCik sug)) € 1@ M= [T 1(D)).

Since this containment is true for every field K satisfying Hypothesis (1.2), it combines with (57)
to imply that we have verified the conditions of Lemma (4.9) (in the version of Remark (4.10)
if p € Il;am). The inclusions claimed in Theorem (6.6) therefore now follow from Lemma (4.9)

upon noting that Theorem (2.10) (d) shows )

mp™

belongs to the subset Cép)(m) U C’ép)(K) of the set #(K) appearing in Lemma (4.9). O

el (D,(fg,n)z for every prime number ¢ that

6.3. Congruences for Mazur-Tate elements

In this section we will prove Theorem (1.7) as an application of the formalism of Bockstein
morphisms from §B.3. We begin by introducing some general notation that will be in place
throughout the section. We will assume the conditions of Theorem (1.7) to be valid in this
section.

To do this, we fix a finite abelian extension L of Q and let K be a subfield of L. The relevant
Galois groups will be denoted as G := Gal(L/Q), G = Gal(K/Q), and H := Gal(L/K). We
denote the conductors of K and L as mp™ and m’ p"/, respectively, where m, m’ € IN are coprime
with p and n,n’ > 0 are integers. As before, we write II for the set of split-multiplicative primes
of E, and Il,,, C II for the subset of primes that ramify in L. Write II, = C Il.y for the

ram —
subset of primes that split completely in K and fix an ordering I, = {¢1,...,{s}, where we

adopt the convention that ¢, = p if p € I, . We define M’ := m/p" e € orde(m'p™ ) and
take
Q = (pEulp(Up)>1Ml () : Trlepn//L (Em’pn’)

with €, . the element constructed in Theorem (2.10). Note that @ belongs to E1(Lp) under
the assumptions of Theorem (1.7). This uses Theorem (2.10) (b) and that pEul,(c,) belongs to
Z,[G]* if p ramifies in L by Lemma (4.8) and the condition on M’ assumed in Theorem (1.7).
For any subset U of II, we will use the abbreviations

SC =5C) sywo and  SCp = SCy @y ) Zy[G).

The complexes @;] inherits from SCy; the properties of being perfect, acyclic outside degrees
one and two, and that H'(SCy,) is Z,-torsion free if E(K)[p] = 0.

6.3.1. Definition of Bockstein morphisms

By Lemmas (6.3) (b) and (6.4) (b) the module Y7, i/ is a quotient of H*(SCY;). Write X(IT,,,,)

ram
for the ordered set of Zy[G]-generators of the module Y7 17, that is induced by our choices
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of places {w1,...,ws} of L above {{1,...,0s}. As a special case of Definition (B.16), we then
have Bockstein maps

o Bsce N N w}
Bi: H'(SCry) ——= H*(SC}) ®z,1) Iu/Tf; — Y., ©z,0) Ir — In/Tilm

ram

with I; =1 (D( )) the augmentation ideal associated with the decomposition group D(Ll) of ¢;.
On the other hand, applying Definition (B.16) to the complexes AK& also provides us with
‘local” Bockstein maps

L]
5AK’ZZ_,IH

wy
B H' (A% 4,) H*(AY ) @76 1 /I — 1 /Ll
that have already appeared in §5.3. To state the relation between 3; and BZI»OC, we write
loc;: SC — A%y, for the natural ‘localisation morphism’. Since H?(loc;) agrees with the

composite map H?(SCp;) — Y, — Yi oy = H? (A7 4,), the naturality of the definition of
Bockstein maps implies that we have a commutative diagram
H'(SCh) SN Iy/Lilg
H (loci)l H (60)
H (A% ) 25 1y /L1y,
To proceed, it is convenient to set v; = (w;), and to recall that we have isomorphisms
In/Lily = Z,[G) @z, (I(H)/LI(H)) and  H'(Ak,,) = Z,[G) ®z, H' (Ky,, Zy(1)),

for the first of which we refer to [San14, (3)] for details. Since H'(SCy) is Z,-free, we therefore
obtain isomorphisms (cf. [MR16, Prop. A.6] or [Sanl4, Lem. 2.5] for more details)

Homg, (¢)(H' (SCh), It /Iiln) — H'(SCh)* @z, (I(H)/LI(H))
Homg, ) (H'(SCh), H' (A% ;) — H'(SCh)* ®z, H' (A% ,,).
As in Proposition (B.17) (b), it follows that the maps 3; and H'(loc;) induce maps

(/\lgz‘gs Bi): m;m H(SCy) — I(H)*/AI(H)

(/\1955 H'(loc;)): ﬂ;p[a} H'(SCy) — ®H1( %)

i=1
with 2 == [[7_, I;, and the diagram (60) implies that we have
(/\lgigs Bi) = (®5_15°) o (/\1%5 H'(locy)). (61)

6.3.2. Congruences for Bockstein morphisms

Recall that in § 3.2 we have defined a Z,[G]-basis by, of T Let X'(IT,,,,,) denote the ordered

L/Q ram
set of generators of T' /Q ® Yg 7, induced by {bL} U X(IL,,,,) and define
FU = ﬁSC x/(H;anl) DetZ »[G] SCU m S EHQ)

as the relevant instance of Definition (B.2). We also write pr for the ‘projection map’

Detz, (g](SCH) ™! — Detz, (SCH) " @7, (g) Zp|G] = Detz, )(SCs1.0)
and 3y, for the element of Dety g(C] S(L))*1 with O x(31) = 252% that exists by The-
orem (3.6). With this notation in place, Proposition (B.17) (c) shows that

(Firo fu)(1) = ((/\mgs Bi)o Friopro fi)(31) mod Iy (62)

with Fip = Fp, 1) mq and fi = fr,s(1)1m1, as in Lemma (6.5).

Having computed the left-hand side of (62) in Lemma (6.5), we will explicitly calculate its
right-hand side in the next section §6.3.3. Theorem (1.7) is then obtained as a consequence of
(62) and these calculations in §6.3.4.
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6.3.3. A computation of Bockstein morphisms
To state the next result, it is convenient to introduce the notation
._ -1 -1 —1,(6) \#
mic = ([[ey, Tomi Bl )™ - ([, Bulelo) ™ vi00% € QulGupn]
The following lemma then computes the right-hand side of (62).
(6.7) Lemma. With notation as above, one has

S
(( /\ Bi)oFmoprofu)GL) =n/x - mr,,/k(Pry, (2ai tur)) - [ [ (rece, (ame,) — 1)

1<i<s i=1

as an equality in Z,[G]/Tr2.

In light of the relation (61), the first step towards proving this result will be the calculation of
the image under the map A, H'(loc;) of the element

arp = (Fpopro fn)(ZaL)-
(6.8) Lemma. In Q;_,(Q, ®z, HI(A}(&_)), one has the equality

(/\1§i§8 Hl (lOCz))(CLH) = 77L/K ' 7.‘-F]\/[//[{(,IDF]M/ (Z]I\zia;t()? EM’)) ’ ®?=1qE,€i' (63)

Proof. Write f&HQ for the map obtained from fr, s 11 via base-changing to Z,[G] and set
IT* =11\ (ITyam U Iy ). Since, by its definition, ITyy,, does not contain p, it follows that IT* is
equal to {p} if p € I;am and empty otherwise. We also let A C {1,...,s} be the subset with
{t;|ie A}y =11, (so A={1,... s} if p&g I, and A={2,...,s} otherwise).

We may then compute, using Prop081t10n (B.7) and Theorem (5.2), that

(A, H'(oco)(am) = (/\,_, H'(locs) (Hofnopr)(m)
= ®19K,e,vi ) C T Peelz)” - (Fre o Fr)(pr(sn)

icA CEMN\IT] oy
= (@ (~¢ DBl (1) @ 0))
ten,,
( II Bule(on) 'vi)# - (Fue o Frie)(pr(3e)).
ZEH\Hram

If p & i,
(Fao fo)(pr(3e)) = (7o/x © Fz o fo)(5L)
= (pEuly(0, 1)) W) e (PL(2E™, Q)
=mp , . /K(PL(z 1)

= (Hﬁel'[’ \{p}(_l) ,gordz(m )*1) 'TrFM//K(PFM,(ZMa}tO,EM/))

where the last equality is a consequence of Theorem (2.10) (c),(ii). Since ord,(¢g¢) = Tam, for
all £ € I ., this proves the claimed equality in the case p & IT., .
It remains to consider the case that p belongs to IT., . In this case, one has

Ty gy 7D 7)< 1P (58 ba1) = 1P, (25550, e, )

and so, writing h}g = H!(h,) for the map induced on cohomology by the map h, in (50), it
suffices to prove that

then we can use Lemma (6.5) to compute that

(locy oF () 0 F i) (02(52)) = 7, , /5 (PF, , (hy(25°), £5,,)) - 4B p- (64)

The equation (64) can be proved via an argument very similar to Proposition (B.7) (b) which
we now briefly sketch.
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Since p is assumed to split completely, RI'(Qy, Z,(1) x/q) and RI'(Qy, Z,, k/q) are represented

by [I/(E N Z,|G]] (first term in degree 1) and [Z,[G] N (K;')*] (first term in degree 0),

respectively. In particular, it follows from (Vg p ., © prL/K)(t(Lp)) = NFm/pn/K([Fm/) A p, as is
proved in Theorem (5.2) (b), that t%) can be described as the element (Np ,/x (IF, ,)Ap)®idz,(q)
of (Az,ic) ') ®z,1c) ZplG)* = Detz, ) (RT(Qp, Zp(1)/q)) -

We now write [P N P] for the representative of C%. s(z) constructed in Lemma (3.5) (b).
Here P is a finitely generated free Z,[G]-module of rank n, say, and we choose a Z,|G]-basis
z1,...,%, such that the composite map P — H?*(C*% S(L)) it (T;/Q) sends z1 to the element

b* defined in §3.2. It follows from the triangle (53) and a standard mapping cone construction

that the complex @’E {p},0 admits a representative of the form [P & Z,[G] 0929, p @ (I/(E )¥]

with the map

p: P— (Kp)', y=A{z= (hp(2),2)e,./k )
where (-,-)g,,/x denotes the cup product pairing HY(Q,, Zyp i)qQ) < Hl(Qp,Zp(l)K/Q) — Zy
(analogous to (4)). Given a = a1 ® (A<, 7]) in Deth[G](CkS(L))—l — (/\rZLp[G} P) ®z,(c]
(/\%p[G} P*), one then has

EVtg?)(a) = (al A 1) ® ((/\

when regarded as an element of

EE— n+1
Deth[G](SCIp}) b= (/\Zp[G](P © ZP[G]) ®ZP[G] (/\

lgignﬁ) A(Ng ,/k(lE,,) AD))

n+2

P
2yt T K5

—

Now, the module Y 1,y is identified with the Z,[G]-submodule of (K )* generated by the
map Ord,, (which is the Z,[G]-dual basis element of p) so that we have X'({p}) = (x1,p). The

explicit description of 19@% 1.0 X (M) given in Lemma (B.5) therefore allows us to calculate
Ap}, Q> ram
that

(Fipy o Fpp)(pr(3n)) = ZaeG((h}; ° /\QSign(ﬂff 0d))(oay), NFm//K<[Fm/))Gm/KU_1

- ZaeG((h}D o ®K,S(L))(0a)7 NFm//K([Fm/))Gm/KU_l

in Z,[G] = H°(Q,, Z, r/q)- The connecting homomorphism HY(Qp, Zypr)qQ) — HY(Q,, Zy(1)k/q)
sends 1 to gg,p by Remark (6.1), hence we conclude that

(H'(locy) o Fyyo ?{p})(PT(éL)) = TF/K (degm,

=TF /K (PFm, (Zylfl/atoa EFm/ )) "4E,p,

as claimed in (64). This concludes the proof of the lemma. O

(h}li(o-z'rlz%to)’ [Fm/)Gm/Fm/O-_l) *qE,p

We can now give the proof of Lemma (6.7).

Proof (of Lemma (6.7)). As a first step, we use Lemma (6.8) to calculate (A;;«, H'(loc;))(am).
An extra argument is necessary because Lemma (6.8) only gives an equality iniaiQp—vector space
and so does not contain information about the torsion component.

To do this, we note that we have the commutative diagram

Dy HO( Qe Zyicjq) —— H'(SCh) ——— H'(Ogs5(1). T,E)
\L: 5 \L@leHl(loci) \L
s @f: i s ° s
0O —— @i:l Zp[G] - @i:1 HI(AK,@) — @z‘:1 Hl(Q&.,TK/Q),

where the bottom line is induced by the exact sequence (49). By Remark (6.1), the connecting

homomorphism arising from (49), labelled §; in the diagram above, sends 1 to qmys, € Ko,
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with v; == (w;)), our fixed choice of place of K above /; (that also induces the isomorphism
HO(Q,, Zy K )q) = Zp|G]). This shows that ®_,qg e, is contained in the image of the composite
map

®H Qfﬂ p,K/Q —>m SCH M)®Hl K@)

=1
In particular, ®z’:1QE,€i is contained in the image of A\, H'(loc;). Moreover, we know that

Mk TE K (Pry (230 6ar)) = My - TF, i (PEy (OF, (7,0 (3Ey )s Earr))

belongs to Z,[G] by (30) in Proposition (4.6) (here we have used that each Eulg(og)_lw(,f)
belongs to the ideal Euly(6¢)™*Ny)Zy[G] + Zy[G] of Qu[G] for every ¢ € II by Theorem
(2.10) (d), and Tam, ' generates Anng, q((E/Eo)(Ky)) if £ € TI'). We have therefore proved
that

MLk Ty K (PR (G ) - (®F-1ame) € (N H' (loci)) ([

o H(SC). (65)

Now, the composite map

(/\1953 Hl(loci))(ﬂ;p{al H'(3Ch) = ®H1 ) = ® (Qp ®z, H' (A% 4.))

i=1 =1
is injective (because ﬂSZP[G] H'(SCY) is Z,-torsion free) and so we conclude from (65) that the
equality (63) of Lemma (6.8)) in fact already holds in @;_, H' (A% ). By (61) and Lemma
(5.5), this argument shows that

(/\1<i<s Bi)lan) =nr/k - 7F,, /k (Pr,, (22f"™, Earr)) - Hizl(recﬂi(QE,&) - 1),

as required to prove Lemma (6.7). O

6.3.4. The proof of Theorem (1.7)

We now explain how the congruence (62) implies Theorem (1.7). By assumption, Eul,(dy)
belongs to Z,[G]* for every £ ¢ II that divides m’. In addition, Lemma (2.18) shows that

¢ . ¢ <\

TI'Fm/pn, /L( H (V1(n?p"/ Elﬂg(gf) 1)#) = WFM//L( H (I/](\/[)/Elﬂg(o‘g) 1)#) mod IH (66)
om’ £l om0l

If we multiply (62) by (66) we then obtain a new congruence valid in 2/I52(. Using Lemma (6.5)

and Theorem (2.10) (a) for the left-hand side of this new congruence, and Lemma (6.7) for its

right-hand side, we obtain (notice the change from zM,tO to yKatO)

S
T =mp k(] vipEw(G0) ™% - Pry, (u55, ear)) - (][ Tamg (rece(ape,) — 1))
oM’ t£p i=1

S
= WFNI,/K(QJ\I\//I[T) . (HTamg_l(req(qui) —1)) mod Aly.
i=1
For this congruence we are also (again) using that we have assumed ¢ € C(Xp )(L), and therefore
that Euly(6) is invertible in Z,[G] by Lemma (4.8), for all ¢ | m’. The final congruence is then
by Theorem (2.10) (a).
This concludes the proof of Theorem (1.7). O

(6.9) Remark. It seems possible that the technical condition on M’ in Theorem (1.7) can be
removed if one combines the calculations of this section with the argument of Lemma (4.9).

A. Integrality of Mazur—Tate elements

In this appendix we derive integrality results for Mazur—Tate elements by following ideas of
Stevens [Ste89, § 3] with refinements due to Wiersema and Wuthrich [WW22].

o4



Statement of the main result We write
vo: Xo(N) = E and ¢1: X3(N) = E
for the modular parametrisations of £Z. We then define the Manin and Manin—Stevens constants
co and c1 by the relations
powe =co-wyr and  QlwE = c1 - wy,

where wy == f(q )— is the differential 1-form associated to f. It was first observed by Gabber
that ¢o and ¢; are (nonzero) integers (see [Edi91, Prop. 2] and [Ste89, Thm. 1.6]). Manin has
conjectured that ¢y € {1} for some curve in the isogeny class in E (namely the strong Weil
curve) and Stevens has conjectured that always ¢; € {£1} (see [Ste89, Conj. 1]).

(A.1) Remark. It is known that if p is a prime number that divides c;, then p? must divide the
conductor N of E (for odd p this was proved by Mazur [Maz78], and for p = 2 by Cesnavicius
[Ces18]). This shows that ¢; € {#1} if E is ‘semistable’ (that is, N is square-free).

In addition, Cesnavi¢ius-Neururer-Saha [CNS24] have proved that ¢; divides the degree of ¢,
and this can often be used to rule out that a given additive prime divides c;.

Although, to the best of the authors’ knowledge, the following result on the integrality of
Mazur—Tate elements has not previously appeared in the literature in this exact form, it is
probably well-known to experts.
To state this result, we write D(m) = ged(m, N) and 6(m) = ged(D(m), %)
(A.2) Theorem. For every m € N, one has

cooc0AnnZ(G, | (E(Fsm))tor) - Oy - S Z[Gi]
and

CooclAnnZ[Gm](E(FD(m))tOr) : GMT - Z[Gm]

The proof of Theorem (A.2) We define the Néron lattice £ of E to be

l7z0t 720~ if Coo = 2
L = € Hi(E(C),Z)} =42 < 67
> {/yw\’Y 1(B(0),Z) } {zm@;mug—) N (1)

We define the ‘Stevens element’ as

St .__
O = ZaE(Z/mZ)X)\f (W)oa € ClGn]
Recall that we have defined the modular symbol Af(;5) at the start of §2.1.

(A.3) Lemma. The lattice £f ®z Z|Gp] contains both coAnngq, |(E(Fsm))tor) - 05t and
c1Anngq,.1(E(Fpm))tor) - 05t for every m € IN.

We now first explain how to deduce Theorem (A.2) from Lemma (A.3). Consider the maps
Re: C[Gp] — R[G), ZaeG TyO —> Z Re (xg)o

Im: C[Gy] — R[Gp], Z g, To0 Z Im (x5)o

Observe that these maps are R[G),]-linear. Using the explicit descrlptlon of Zg given in (67),
we obtain that for every element o € £ ®yz Z|G,,] one has
R I 1
ee) , Tm(a) _ 1
Qt Q- Coo
We consider the cy case, the c; case is similar. Fix an element z of Anngjq,.1(E(Fsm))tor)-
Lemma (A.3) then combines with (68) to imply that
Re(65%)  Im(65Y) cooRe(coz - 05Y)  coolm(cox - 65)
Or 1 0 ) = +1

Z[Grm). (68)

C Z[Gml.

Coot0t” ( Ot 0- =
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To prove Theorem (A.2), it therefore suffices to note that

- Re(Ar()) | Im(As())
Om' = ZaE(Z/mZ)X (&) + &) o = ZaE(Z/mZ)X ( Qf+ e Qf— )U“
Re(65Y)  Tm(65Y)
=~ ==
We now turn to the proof of Lemma (A.3), again in the ¢y case. At the outset we note that

)\f(a):27ri/ f(T)dT:col/ w,
ico v(a)

where y(a) is the image in E(C) of the path from ico to a given by the vertical line in the
upper half-plane from ioco to a. Writing H C C for the complex upper half-plane, one therefore
has the commutative diagram (see, for example, [Dar04, Prop. 2.11])

(PHQ)UH)/ ~ == Xo(N)(C)
\LCOAf J/@o
C/ L5 —= 5 B(C).

For any cusp a € PY(Q) we then write P, := @g(a) for the point in E(Q) corresponding to
co DY t(a) + 2, and we note that P, is a torsion point by the Manin-Drinfeld theorem.

From this it is clear that coAf(a) belongs to g if and only if P, is trivial.

It is proved in [Ste82, Thm. 1.3.1] that any cusp % of Xo(V) (with ged(r,s) = 1) is defined
over Q(¢n) and that the action of Gy on % is given by

s s
where a~! denotes the inverse of a mod N. We note that in [Ste82, Thm. 1.3.1] the description of
Galois action has the inverted element in the denominator rather than the numerator. However,
these two cusps are equivalent in Xy(n), see [DS06, Prop. 3.8.3]. Take s = m and suppose that
a =1 mod §(m). Then also a=! =1 mod J(m), hence a;nlr is 'o(IV)-equivalent to - ( this
can be deduced from [DS06, Prop. 3.8.3], see the argument on page 103 of loc. cit.). As a
consequence, the subgroup {0, | (a, N) = 1,a =1 mod §(m)} = Gal(Fn/Fsy)) fixes the cusp
o7 and so any such cusp is defined over F,,).

We next observe that the map

P! (Q) — E(@)tom a— P, = SDO(Q)
is Gal(Q/Q)-equivariant because the modular parametrisation ¢ is defined over @ (hence
Gal(Q/Q)-equivariant). It follows that the point P, belongs to E(F5(m))tor for every cusp

a € PY(Q) of the form a = --. Now, we extend the earlier diagram Z[G,]-linearly to obtain
the commutative diagram of Z[G,,|-modules
PY(Q) » C[G]

l l

E(Fp)tor ®z ZGp] —— (C/ZE)[Gn).

Here the top map sends the class of L to >vea, Af(o-E)o = Yaczmzy* M) 0a = 03¢,
and the vertical map on the left sends - to > o (0 Pyjp)ot = > aezmz)* PaymTa-

We have seen above that each of the points P, ,,, belongs to E(Fj,,))tor, hence the latter element
is annihilated by Anngjq, .| (E(Fs5(m))tor). Commutativity of the above diagram therefore shows
that the class of 65! in the quotient (C/.Zg)[G,y,] is annihilated by Anngq, 1 (E(Fs(m))tor), as
required to prove that Anngg, .| (E(Fs(m))tor) - 5% belongs to L[Gn).

When considering the ¢; case we note that [Ste89, Thm. 3.11] shows that the cusps of X (V)
is defined over Q({y) and that the action of Gy is as defined before. Let @’ =1 mod m. It
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follows from [DS06, Prop. 3.8.3] that - ~ % Hence, the subgroup {o, | (a,m) = 1,a =1
mod D(m)} = Gal(Fy/Fp(y)) fixes the cusp ;-. The result in this case then follows as
before. ]

B. Some general algebra

In this section we establish useful results of a general algebraic nature.

B.1. Perfect complexes and their determinants

Let R be a Noetherian commutative ring. For any R-module M, we endow its R-linear dual
M* = Homg (M, R) with the structure of an R-module by means of

RxM*— M, (x,f)—{y—z-f(y)}.
We also set MV := Hompg (M, Q/R) with Q the total ring of fractions of R.

(B.1) Remark. Note that in the main text the notation M" was used for the Pontryagin dual
Homy (M, Q/Z) of M, which might differ from Homg (M, Q/R). For example, if R = Z[G] for a
finite abelian group G, then (3) induces an isomorphism Homz (M, Q/Z)* = Homg (M, Q/R).

We write D(R) for the derived category of R-modules, and DPf(R) for its full subcategory of
complexes that are ‘perfect’ (that is, isomorphic in D(R) to a bounded complex of projective
R-modules).

Given C* € DP*f(R) represented by a bounded complex ... — C*~! — C% — C*™* — ... of
projective R-modules C? that are each placed in degree i, we denote its Euler characteristic
as xr(C®) =Y ;cz(=1)" - [C"] € Ko(R). Here Ko(R) denotes the Grothendieck group of the
category of finitely generated projective R-modules. If R is semisimple, then the rank function
induces an isomorphism Ky(R) =2 H(SpecR,Z) and so we may regard xz(C®) as an element
of H°(SpecR,Z). In this case we write yz(C*®) < d if xr(C*) belongs to H’(Spec R, Z<q).
The determinant of C* is denoted by Detr(C®) = @),y Detr (CH)(=1". In this context we
remark that, following Knudsen and Mumford [KM76], Detg (C*®) must be considered a graded
line bundle in order to avoid technical sign issues. However, since the grading is uniquely de-
termined upon fixing a representative for C'*, we have chosen to suppress any explicit reference
to the grading in order to simplify the exposition.

For every element a € Detr (C®)~! := Detg (C*®)* we also obtain a canonical ‘evaluation map’

Ev,: Detg(C*) — R.

The following definition underlies many of the constructions in the main text.

(B.2) Definition. Let R be a Noetherian reduced ring with total ring of fractions Q. Let
C* € DP*(R) be a complex, and fir a surjection k: H*(C®) — Y with Y a finitely generated
free R-module of rank d > x = xo(Q ®% C*®) together with an ordered R-basis B of Y. We
define a canonical map as the composite

Voo s Detr(C®) ™! —— Q ®@g Detr(C*)~*
—— Deto(Q ®% C*)~!
—— ), Deto(H(Q@k *) V™"
Y, Deto(HY(Q ®% C*)) @g Detg(Q @r V)~
= AT Q ek HY(C*)
o R ’

Here the second arrow follows from the base-change property of the determinant functor, the
third arrow is the natural ‘passage-to-cohomology map’ (which exists because Q is semisimple),
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the fourth arrow is multiplication by the idempotent ece y of Q that is defined as the sum of all
primitive idempotents of Q that annihilate Q @ ((ker k) & Dicz (1.2 H'(C*)), and the final
isomorphism is induced by Ev, with the element x = \ycy b of Detr(Y).

We often work with complexes that satisfy the following slight variant of [BS21, Def. A.6].

(B.3) Definition. Let C* € DP™(R) be a perfect complex, and suppose we are given a
surjection k: H*(C®) — X with X an R-module generated by an ordered set X = {x1,..., 24}
of cardinality d. A representative for C*® of the form

FO %, pr o g2 (69)
is called a ‘standard representative’ for C® with respect to k and X if the following conditions
are satisfied:

(i) For every i € {0,1,2}, the module F* is R-free of finite rank n; and placed in degree i.
(ii) Oy is injective (so C* is acyclic outside degrees 1 and 2).
(iii) d+ ni > ng + ne.

(iv) There exists a basis {b1,...,bn,} of F? such that the composite map F? — H?*(C®) — X
maps b; to x; if i € {1,...,d} and to 0 otherwise.

(B.4) Remark. Standard representatives exist in many contexts; they can often be construc-
ted via the method of [BS21, Prop. A.11 (i)] (see also [BKS16, § 5.4] and [BB25, Lem. 2.35]).

To give an explicit description of the map Yce 3 for complexes that admit standard repres-
entatives in the sense of Definition (B.3), we shall use that for any R-module M and integers
0 <r < s one has a map

s s " T r—s
Oy [\ M= Home (M, A\~ M)
defined by means of the rule
AN ANfs— {m1 N ANmy — ZO’EG sgn(o) det(fi(mgj))lgigs “Mo(s+1) N A\ mg(r)}.

Here 6,3 :={0c €6, |o(l)<---<o(s) and o(s+1) <--- < o(r)}. To simplify notation, we
denote @’/ (f) also by f.

(B.5) Lemma. Let R be a reduced Noetherian ring with total ring of fractions Q. Assume
C* € DP*™(R) is a complex that admits a standard representative (69) with respect to (x,X)
for some surjection k: H>(C®) — X and set of generators X = {x1,...,zq4} of X. Suppose
d < d' is an integer such that ) = @le Rz is a free R-module of rank d, B = {x1,...,x4},
and n = (d+n1) — (no + n2). Then the map

Detr(C) 7 = (A (F)) er (A FY) or (\s (F)) = Qer N} F!
defined by means of the rule

foge® /\ i = (1) (F A /\d+1Si§n2 (bi 0 00))(9).

1<i<ng

~ 6*
where f denotes a preimage of f under the surjection @ @r N (F1)* = Q @r AW (F0)*, is
well-defined, has image in Q @ N\ ker(91) and coincides with Uce 3 when composed with the
projection Q @r N\ ker(d1) — Q @r Ng HY(C®).
Proof. First we observe that condition (iv) in Definition (B.3) means that the map F? —
H?(C*) & Y induces a direct sum composition F? = G? @ Y with G? := @D;2 ;1 Rb;. From
the free presentation F'! NN ker(x') — 0 we then deduce that any element of the

form (/\d+1§z’§n2 (bf 0 01))(g) belongs to Fitt"(ker(x’)) C Anng(ker(x’)). In particular, the
idempotent e = ece y acts as the identity on any such element. Since the definition of Jce g

o8



involves extending scalars to @ and multiplication by e, we may prove the lemma after extending
scalars to eQ, thereby reducing it to the case that R = eQ. In particular, R is a semisimple
ring and so we may fix splittings lop and [; of the exact sequences

K~ =~
0 Fy —2 ker(dy) —5— H'(C*) — 0
0 — kerd P G 0
i
which induce isomorphisms
n no . ~ n+no
( /\R F% ar ( /\R HY(C*) = /\ ker (), (70)
(Cl VAYNRRRIVAY Cno) X (h1 VANRREIVAN hn) — 80(61) SURIVAN 80(Cn0) A\ lo(hl) VANRREIVAY lo(hn)
and
n+ng ne—d o\ ~ n1
(A, ker@) o= (A, 633N\, A (71)
FR (1A inyq) = A1 00 E) A Al 007 ) (iny—q)
that are independent of the choices of splittings lp and [;. Fix an R-basis basis ci,...,cy, of
FO for convenience and write Cly -+ Cpy, for the correspondmg dual basis. By (71), we may

write g € AR F' in the form j A Ay <icp, (00 H)(b;) for some j € A% " ker(d;) that, by
(70), can in turn be written as j = 9y(c) Alo(h1) A -+ Alo(hy) with ¢ = ¢; A -+ A ¢y, and a
suitable element hy A --- A h, € N H'(C®). Now, the ‘passage-to-cohomology map’ in the
definition of Yce g3 is given by the Composite of isomorphisms

Detr(C*) = (s (F AZFﬂ®R(A§uﬂﬂ
(N\n(F MY e (N V) er (NS @))
(/\R ) @r </\ Fer (Ne (@) er (N 57)
NS ) ex ( /\ " ker(@) o (NG
or ( /\jj @) or (N2 V")
DN (FO) ) er (A" ker(@) @r (A7)
AR E)) e (N FO) er (NS HC) or (N2 )
ﬁi(A;HmT»®R<AE”yﬂ
where the first arrow is induced by the exact sequence 0 — Y* — (F2)* — (G?)* — 0 and the
arrows labelled (x) are induced by the relevant evaluation isomorphisms. Set ¢* = ¢jA---Ach,

Since the composite of the first and second arrows sends /\;<;<,,, b7 10 Agy1<icn, 05 ©A1<ica b7
one therefore has

dorn(c@g@ N\ __ B =l A Ahy e/\;Hl(C’).

Note that this does not depend on the choice of by,..., by, or ci,...,cp,. On the other hand,
we may compute that

(AN i (70 0D ) =

tit"lA

S (VAW X))
(

Q

)
1)%0'(n2—d) s _1)(n+"o)(n2—d) )
—1)"m2=d) (e Alg(hy) A -+ Alo(hn))
= (=1)"2= D go(hy) A+ Alg(hn),
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hence comparing with the last displayed formula gives the desired comparison with J¢ce 3 after
applying A"q, and also shows that the considered map is independent of the choice of ¢*. [

(B.6) Remark. If F* = 0 and n; = ng, then Lemma (B.5) recovers [BS21, Prop. A.11].

To prepare for the statement of the next result, we remark that the isomorphism /\%RF =

( /\%RF F)* is valid for any finitely generated free R-module F' and induces an identification
Detr (C®)~! = Detg (RHomg (C*, R)).

The following result records useful functoriality properties of the map v¢ce y.

(B.7) Proposition. Let R be a Noetherian reduced ring with total ring of fractions Q.

(a) Assume we are given an exact triangle

A

B* 2 c* A°[1] (72)

in DP*™(R) together with an R-free quotient Y of H?(B®) of rank d > xo(Q®% B*) and
with ordered R-basis B. Set n:=d — xo(Q ®r B*).

2
(i) Suppose xr(C*®) = 0 and that the map H?(A®) o), H?(B*) — Y induced by (72)
is surjective. For every element a € Detr (CT)™! = Detr (C*) and with the notation
C' == RHomg (C*®, R)[—2], one has the commutative diagram

1d®Ev,
_—

DetR(B’)_l (7—:2)> DetR(A‘)_l KR DetR(C')_l DetR(A')_l

lﬁBﬂ‘B lﬂm,%
’19 g(a) n n 1 n
Qer Ap HY(B*) —2 geg Ap HY(BY) « 2 g ep A HY(A%),

(i) Suppose xr(A®) = 0 and that the map H*(B®) — Y factors through the map
H?(g): H*(B®) — H?*(C*®) induced by (72). For every a € Detg(A®)~! one then
has the commutative diagram

Detr (C®)™1 2292, Detg (A*) ™! @r Detr (C*)! —y " Detr(B*)
lﬂcﬂ% lﬁBﬁ‘B
n Hl Co 'ﬁA'vg(a) n Hl Co /\nH2(g) n Hl B*
Qar N\g H(C?) Qor Ar H'(C®) «—— Q@r \g H' (B*).

(b) Let C* € DP™(R) be a complex and Y a quotient of H*(B®) that is R-free of rank
d>1+xo(Q®% C*) and has ordered R-basis B. Let f: R[1] — CT := RHomg (C*®,R)
be a morphism in D(R) with dual map f*: C* — R[-1].
(i) The map H'(C®) @r Q — Q induced by H'(f*) via extension of scalars coincides
with the composite map

HY(C*) 9r Q = HY(Q &k %) = B (Q ek 1) = Qor HY(CT U, g

(ii) Setting D*® := cone(f*)[—1], the following diagram is commutative.

Detr (C*)~! —=— Detr(D*)~! ®x Detg (R)~F 22 Detg (D*)

lﬁc',% lﬁD.’%
Qer \gr HY(C®) U, Qar N ' HYC®) «+—— Qar N ' HY(D®).

(c) Suppose C* € DP°™(R) is a complex with x(C®) = 0 that is acyclic outside degrees 1 and
2. Setting, CT := RHomg (C*, R)[i] for a fized odd integer i, one then has an equality of
R-submodules of Q

Jce o(Detr(C*) ™) = Vet o (Detr(C) ).
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(d) Let C* € DP*"{(R) be a complex and R — R’ a surjective morphism of reduced Noetherian
rings. Write p: C* — C* ®% R’ and pi°*: Detgr(C*)~! — Detr/(C* ®% R') for the
induced morphisms. Suppose Y is a quotient of H?*(C®) that is R-free of rank d >
xo(Q ®% C*) and has the property that the map H*(C®*) ®r R’ — Y ®r R’ factors
through the map H?(C®*) ®r R' — H?*(C* ®% R') induced by H*(p). We also fiz an
ordered R-basis B of Y and write B’ for the induced R'-basis of Y @r R'. Then one has
the commutative diagram

det

DetR(Co)fl 4 DetR/(C. ®]7L2 R/>
J/ﬁc.’% \Lﬂc.(@%R/,‘B/
nrrl
Qar AL HY(C%) L0 0 9n AR, HY (O 0k R)

Proof. To prove claim (a) (i), we note that the determinant functor behaves well under base
change so that, replacing all appearing complexes by those obtained from applying the functor
(ecoz - epey - Q) ®% (—) to them and replacing V by (ece o - eps y - Q) ®r Y if necessary, we
may assume R = Q and ege y =1 = ecs g = €t z. In particular, B® is acyclic outside degrees
1 and 2 with H?(C®) = Y and C*® is acyclic. Since R is semisimple (even a product of fields), it
follows that B® admits a representative of the form [H'(B*) RN Y] and C*® can be represented
by the zero complex. Our convention then identifies Detr (C**) with Detr(C*®)™! = R*
and under this identification Ev, corresponds with the map Q — Q that sends x to a(z).
On the other hand, the isomorphism R* = R, f — f(1) combines with Lemma (B.5) to
imply that ¥ce« z(a) = a(1). In addition, for our fixed choices of representatives, the triangle
(72) identifies A® with B® and so, using the description of ¥4« 3 given in Lemma (B.5), it
is straightforward to check that the diagram in claim (a) (i) is indeed commutative. The
commutativity of the diagram in (a) (ii) can be proved in the same fashion.

To prove part (i) of claim (b), it suffices to note that Q is a finite product of fields and therefore
Homg(—, Q) an exact functor. As for part (ii) of claim (b), we may again reduce to the case
that R = Q. To justify a further reduction, we let e be a primitive orthogonal idempotent of Q
such that e - (A"H(f*)) o e ) is nonzero. In particular, the map eH'(f*): eH'(C) — eQ
is nonzero and hence surjective because eQ is a field. From the exact sequence

H'(f%)

0 — HY(D*) — HY(C*) R H?(D*) —— H?*(C*) — 0

we then conclude that eH?(D®) = eH?(C*®). On the other hand, if edcs o is nonzero, then
eece s = € and this combines with the isomorphism eH!(D®) = eH'(C*®) that is valid for
every integer ¢ # 1 to imply that also eepe 3 = e. This proves that epe o acts as the identity
on the image of (A"H!(f*)) o Jce . Since the same is true for the image of Upe g by its
very definition, we may replace the complexes C* and D*® by epe ®]é C*® and epe ®Hé De*,
respectively, to reduce to the case that ece 3 =1 = epe 5.

In this case, then, C* admits a representative of the form [H!(C*®) RN Y] and a standard

mapping cone construction yields the representative [H'(C*) w R @ Y] for D*. Given
these explicit representatives, the commutativity of the diagram in claim (b) (ii) is a direct
consequence of the descriptions of the maps Yce g5 and ¥pe g5 obtained in Lemma (B.5).

To prove claim (c), we fix a representative

8777.—1

9 ntl Ly ommt Intloom g (73)

R L L G O

of C* with suitable natural numbers n,m € IN and finitely generated free R-modules C7 for
j € {—n,...,m} that are each placed in degree j.

The assumption that C* has vanishing cohomology outside degrees 1 and 2 combines with the
vanishing of x(C*®) to imply that C* ®% eQ, with e == ece g, is acyclic. In particular, for every
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j we may fix a splitting
fi1eQ®ar C7 2 eQ@r (imdj_1 @ (C7/ker d;))
as well as an isomorphism of R-modules
¢: Qg OO = @j q(QERCT) = OV = @j o (QORCY)
that restricts to give the isomorphism
eQ ®r C°1 =5 eQ @R O, (a;);j = ((9j-10 fj-1)"" @ 9;)(f;(ay))-
Writing M (¢) for the matrix (with entries in Q) representing ¢ in a choice of R-bases for C*V"
and C°49, one has the equality of R-submodules of Q
Joe o(Detr(C*) 1) = e - detr(M(9)) - R.

On the other hand, applying RHomg(—,R) to the representative (73), we see that CT is
represented by

tr tr
---—>0—>Cmm—71>0m_1—>---—>0_”+187—”>C_”—>0—>...,
where now C7 is placed in degree —j 43, and the maps 3Jt-r are obtained from 0; in the following
way: Fix R-bases of 7 and C7*!, and write A; for the matrix representing 9; with respect to
these bases. Then 6? is the unique R-linear morphism C7*! — (Y that, for our fixed choices
of bases, is represented by the transpose A;r of the matrix A;.
An analysis similar to the one above shows that

ot o(Detr(CT)) = detr (M(¢)) - R,
where now ¢/: Q@ CT°dd = Q@ CV" - Q@r C°I = Q @i CTeven (for the identification
we have used that ¢ is odd) is any isomorphism of R-modules that restricts to
eQ®r CV" = eQ @r C°,  (a;); — (95, & (9} o f;)"")(fi(ay))-

The equality claimed in (c) therefore follows upon noting that detg (M (¢)) = detgr (M (¢')).
Finally, claim (d) is valid because the definitions of ¥ce  and 29C.®17L2 R/ both involve the
passage-to-cohomology map. O

(B.8) Remark. Part (a) of Proposition (B.7) generalises the observation of Burns and Flach
in [BF98, Lem. 1].

B.2. Fitting ideals and exterior biduals

In this subsection we study integrality properties of the maps from Definition (B.2). In doing
so, we will be naturally lead to consider R-modules of the form

s %\ *

(aor A\, M) (74)
for an ideal a C R, an R-module M, and an integer r > 0. Taking a = R, this construction
specialises to give the ‘r-th exterior bidual’ (g M = (A% M*)* of M that has been studied in
detail by Burns and Sano [BS21, App.] and Sakamoto [Sak23, App. B] as a generalisation of
the lattice utilised by Rubin in [Rub96]. The following observation shows that modules of the
form (74) should be considered a generalisation of Rubin’s lattice with ‘denominators bounded
by a’ and, in particular, specialise to the lattices studied by Popescu in [Pop02].

(B.9) Lemma. Let R be a reduced Noetherian ring with total ring of fractions Q. For every
ideal a C 'R, finitely generated R-module M, and integer r > 0, there is a canonical isomorph-
8m

et {a€ Q®R/\;M | Anng(a)a =0, f(a) € a™' for all f € /\R My s (a®n/\; M*)*,

Here a ! :={q€ Q| qa € R for all a € a}.
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Proof. This is a natural generalisation of the result of [BS21, Prop. A.8]. For the convenience
of the reader, we provide the argument.

Applying the functor Homg (a ®% A% M*, —) to the exact sequence 0 = R — Q — R/Q — 0
gives that

(a @R A M*)" = ker { Homg (a @ Ajg M*,Q) — Homg (a@x Al M*,Q/R) }.

As Q is a finite product of fields, the ideal Q - Anng(a) is generated by an idempotent e € Q
(so that Q-a = (1—¢)Q) and Q®xg M is a finitely generated projective Q-module. By [BS21,
Lem. A.1] we therefore have an isomorphism

(1-Qor \ M=(1-e) \ (QerM) = (1-e)( ) (QerM), ar {pr oa)}

Furthermore, there is an isomorphism Homg(Q®% N, Q) = Homg (NN, Q) for any R-module N
by the tensor-hom adjunction. It follows that (1 —e)(o(Q®r M) = Homg (a @r AR M*, Q).
The lemma now follows upon noting that an element a of (1 —€)Q ®r A M belongs to the
kernel of Hompg (a ®@r AR M*, Q) — Homg(a @& Ax M*, Q/R) under these identifications if
and only if one has zf(a) € R for all z € a and f € AR M*. O

Note that, for every integer s <r and f € Ax M*, we obtain a map

r % r—s %
(@or A M) = (aor A\ M), ¢ {a®gm pla® (fAg)}
that, by abuse of notation, will also be denoted as f. This construction gives a commutative
diagram
f

Ar M » N "M
{ {
(a@r N M)~ (ar N M7)',
where the top arrow is the map @gj( f) defined earlier and the vertical arrows are the maps
(with t € {r,r — s})

t t *

/\RM — (Cl QR /\'R M*> , miA---Amg— {CL (9 f1 A A ft —a- det(fi(mj))lgingt}.
Following Sakamoto [Sak23], the results in the remainder of this section are most naturally
stated for rings that are ‘quasi-normal’. That is, Noetherian rings R that satisfy the following
two conditions.

(G1) The localisation R, of R, at any prime ideal p C R of height at most one, is Gorenstein.

(S2) The localisation R, of R, at any prime ideal p C R of height n, has depth at least
min{2,n}.

(B.10) Proposition. Let R be a quasi-normal ring and C* € D" (R) a complex that admits

a standard representative (69) with respect to a surjection k: H*(C*®) — Y for a free R-module

Y of rank d and an ordered R-basis B of Y. We also set n = d + ny — (ng + na).

(a) There exists a well-defined canonical map
@eess: Detr(C*)™" — (Fitt% (H(C*)Y,) ©r /\; HY(C*)*)*
with the property that, if R is reduced, then one has

¢l omoe s = Voo

with & = le(c'),Fitt%(Hl(C-)V ) the isomorphism from Lemma (B.9).

tor

(b) One has an inclusion of R-modules

{f(a) | a € im(wces3), f € /\; H'(C*)*} C Fitth (H' (C*)h,)* @ Fitth (H*(C®))*™.

tor
Moreover, if p C R is a height-one prime ideal in the support of the cokernel of this

inclusion, then (H'(C*){,)p does not have finite projective dimension as an R,-module.
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(c) If p € R is a prime ideal of height at most one with the property that Ry, is a regular
local ring, then one has the equality

m(Dce )y = Fitth(H2(C*)), - Fitth (H(C*)%0); - () H'(C),.

Proof. Dualising the tautological exact sequence 0 — F° — F! — F1/F0 — 0 gives the exact
sequence

o*

0 —— (FY/F%* —— (F1)* —2—= (F)* —— ExtL(F'/F),R) —— 0, (75)

from which we deduce, by the definition of Fitting ideals, that one has
. 1o * 9 o * : o *
im { /\R (FLy* =2 /\R (F%)*} = Fitt% (Extk (F'/F° R)) - /\R (FO)*. (76)
In particular, for every f € AR (F°)* and A\ € Fitth (Exty (F1/F° R)) we can find M€
R(FY)* with O5(Af) = A~ f.

Write by, ..., by, for the basis from condition (iv) in Definition (B.3). Given an element f ®
0 ® Ni<icp, Ui of Detr(C®)™1 = AR (FO)* or AR F' ®r /\"2 (F?)* we now consider

I :(X}A/\dﬂgm biod)) /\ Pl

Set I == @;2,,,(R-b;) so that we have a direct sum decomposition F? = F'®). By property
(iv) in Definition (B.3), 9; maps to F’ and therefore it follows from [BB25, Lem. 2.17 (ii)] that
the map Ay, jcicp,(0F ©01): AR " F1 — AR F1 has image in () ker(d1). In particular,
a/w belongs to () ker(d1). Writing ¢ for the map (5 ker(d1) — (N H'(C*) induced by the

projection ker(d;) — ker(9y)/Fy = H'(C*®), we may then define the map
Detr(C*)~! — (Fitth (Extk (F'/F°,R)) ®r /\; HY(C*)*),

= A@ @ (1) p(g(af)) ) (77)
We now claim that p(¢(a’ f)) is independent of the choice of lift A f of A\f even though a7 might

depend on it. Let g and ga be two such lifts of Af, then we shall show ¢(¢(ay,)) = ¢(¢(ay,))

by verifying that (¢(ay, — ay,)) vanishes in the total ring of fractions Q of R. For this it is
enough to prove the required vanishing in the localisation R, at every minimal prime ideal p of
R. By the validity of condition (G1) the ring R is self-injective and so R, @ Extj (F1/F°, R)
vanishes. It therefore follows from (75) that (F''/FY), is a free Ry-module of rank ny —ng and
that we have a canonical isomorphism

/\::p (Fl); = (/\::p(FO);) R /\zp—nO(Fl/FO);, (78)

In addition, as R, is self-injective, dualising the injection H'(C®) = ker(dy)/Fy — Fi/Fy
shows that the restriction map (F1/Fy); — H'(C®); is surjective so that we may assume ¢ is
the restriction of an element ¢ € A;zp(Fl /Fo)y- Now, the element

(Af)® (95/\ /\d+1§i§n2 (b7 o 81)) € (/\ (FO ) @R /\m no l/FO)

is a preimage of both g1 A @ A Ayy1<icp, (b7 © O1) and 92 NP N Ngi1<icn, (bf 0 01) under the
isomorphism (78), and this implies the claimed independence from the lift Af of \f.
Next we note that there is an exact sequence

Exth (J,R) — BExth(F'/F°, R) —— Exth(H'(C*),R) — Ext%(J,R),

where J denotes the cokernel of H'(C®) — F1/F% We claim that the middle arrow in this
exact sequence is a pseudo-isomorphism. Indeed, from the exact sequence 0 — J — F? —
H?(C*) — 0 we obtain isomorphisms Ext% (J, R) = Ex‘c%rl (H?(C*),R) for every i > 1, which
shows these modules to be pseudo-null because R is assumed to satisfy condition (G1). Since
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one also has a pseudo-isomorphism Extk (H'(C*),R) — H'(C*)y,, by Lemma (B.12) below

tor
and reflexive ideals of R are uniquely determined by their localisation at primes of height at

most one (cf. [Sak23, Lem. C.11]), one has an equality of reflexive hulls

2 = Fitth (Extk (F'/F°, R))*™ = Fitt% (Exths (H'(C*®), R))*™ = Fitth (H' (C*){,)**
For any finitely generated R-module M, we therefore obtain pseudo-isomorphisms

Fitth (Exth (F'/F° R)) @ M — A @r M +— Fitt%(H(C*).,) @r M

and this combines with condition (S2) to imply that, by [Sak23, Lem. B.5], taking duals gives
isomorphisms

(Fitt% (Exty (F'/F°, R)) @r M)" «+— (A@rg M)" — (Fitth (H' (C*):) ®@r M)".
We then define the map wee o in claim (a) to be the map defined in (77) composed with these
isomorphisms for M = A% H'(C*)*. With this definition, it follows from Lemma (B.5) and
the definition of the map ¢ that one has ¢! o wee 3 = Vee 8, as required to prove claim (a).

As for claim (b), Lemma [Sak23, Lem. C.11] reduces to prove the claim locally at primes p C R
of height at most one. To do this, we first observe that by [BS21, Prop. A.2 (ii)] one has

{ Asircicr, B0 00)@) |2 € /\ Flhe /\’7:”“(1?,})*} = Fitt), (ker{ H2(C*) %5 Y1),
= Fitth (H(C*®))p.
Now, the cokernel of the restriction map (F!/F°)* — H'(C*®)* identifies with a submodule
of Ext%z(J, R) and so, as observed above, is pseudo-null. Given this, the inclusion claimed in
the first part of (a) follows by taking h = A A @ with 3 a lift of ¢ € /\%p H'(C*); so that
hAar1<i<n, (b7 © 01)(a)) = w(ags).

In addition, said inclusion is an equality (at p) whenever the subset of /\"+"°(F1) com-

prising all such Af f A @ is equal to nJr"O(F 1)*. To investigate when this happens, assume
that Extk (H1(C*){,R)y = ExtR(Fl/FO, R), has finite projective dimension. From the
Auslander-Buchsbaum formula we then see that Extj (F'/F° R), has projective dimension
at most one. From (75) it therefore follows that im(9j), is a projective (hence free) Ry-module
of rank ng so that we have an isomorphism

ni ni—no ni—no .
/\Rp (P = (/\Rp (F'/F)) &r (/\R,, im(93)p)
ny—mn n
@ /\Rlp "(F/F%)) @ Fittd (Exth (F1/FO,R)) - /\ROP(FO);.

To finish the proof of claim (b), it therefore suffices to recall that, as already observed earlier,
the restriction map (F'/F%) — H'(C*®)} is surjective.

To prove claim (c), assume that p C R is a prime ideal of height at most one such that R, is a
regular local ring, so either a field or a discrete valuation domain. In this case, one has identific-
ations Fitty (H'(C*)y,); = Fittk (H'(C*)i,)y  and (N H'(C®)), = (AR H'(C*)y), with
HY(C®)y == HY(C®)/H'(C®)1or the torsion-free quotient of H'(C®). Since the latter is a free
Rp-module, claim (c) follows from claim (b) and the equality

A-M={aeM| f(a)e Aforall fe M}

that holds for every free Ry-module M and Ry-submodule A of the total ring of fractions of
Ry. O

(B.11) Remark. Results similar to Proposition (B.10) have previously appeared in various
places, see for example [BS21, Prop. A.11]. The main novelty of Proposition (B.10) is that
we do not need to assume H'(C®)Y. . to vanish, and in this regard our approach is related to
[BST21a, Prop. 3.18].
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(B.12) Lemma. Let R be a ring that satisfies (G1). For every finitely generated R-module
M with R-torsion submodule Mo, there is a pseudo-isomorphism

Exth (M, R) — M,/

tor*
Proof. Since R is assumed to be quasi-normal, its total ring of fractions Q is a self-injective ring
and so Homg (—, Q) = Homg(— ®r Q, Q) is an exact functor. As a consequence, Exth(—, Q)
vanishes and we obtain a commutative diagram with exact rows of the form
Hompg (M /Mior, Q) — Homg (M /Mior, Q/R) — Extl (M/Mior, R) — 0
= b i
Homg (M, Q) —— Homgp (M, Q/R) —— Exth(M,R) — 0.

A diagram chase then shows that one has a composite map

Exth (M, R) — coker{Homg (M /Mo, R) — Exth (M, R)} (79)
= coker{Homg (M /M;or, Q/R) — Homg (M, Q/R)}
< Hompg (Mior, Q/R). (80)

To show that this map is a pseudo-isomorphism, we may reduce to the case that R is a
Gorenstein ring of dimension at most one. In this case, then, Q/R is an injective R-module
(see [Bas63, Thm. 6.2 (2)]) and so the map (80) is an isomorphism. To show that (79) is an
isomorphism it suffices to prove that Extl (M /Mo, R) vanishes. This follows from the fact
that M /M., is a reflexive module (as can be seen from combining [Bas63, Thm. 6.2 (4)] and
[Vas68, Thm. A.1]) so that dualising a projective presentation Py — Py — (M/Mioy)* — 0
gives an exact sequence 0 — (M /M;oy) — P — Py from which we conclude that

Exth (M/Mior, R) = Ext% (coker{ P} — P;'},R) =0

vanishes because R is Gorenstein of dimension at most one. O

B.3. Bockstein morphisms

In this section we recall the formalism of Bockstein morphisms that is a variant of the theory
of algebraic height pairings developed by Nekovaf in [Nek06, § 11]. We follow the treatment in
[Bur(07, § 10] but generalise it to the setting of Proposition (B.10).

We begin with an elementary, but important, observation.

(B.13) Lemma. Let R be a commutative Noetherian ring, C* € DP™(R) a complex, and M
a finitely generated R-module.
(a) If i € Z is an integer such that H'(C®) = 0 for all j > i, then the morphism C® —
c* ®%L2 M induces a natural isomorphism
H{(C*) @r M = H(C* % M). (81)

(b) Leta C R be an ideal and suppose there is an isomorphism v: R/a = Rla] of R-modules.
Then v induces a morphism vy : M ®g (R/a) — M of R-modules and an isomorphism

voe: C* ®% (R/a) = RHomg (R/a,C*) (82)
in D(R). Ifi € Z is an integer with H/(C®) = 0 for all j < i, then vge induces an
mjection

HY(C* @% (R/a)) — H(C*)[a]. (83)

Proof. Assuming C* is acyclic in degrees greater than ¢, it admits a representative of the form
O N CLE = G|} (84)

where each C7 is a finitely generated projective R-module that is placed in degree j. For every
finitely generated R-module M, the complex C* ®% M can then be represented by

e O M - C R M —» CP@r M — 0
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and, as the functor (—) ®g M is right exact, this implies claim (a).

As for claim (b), we may define vy : M @z (R/a) — M by means of the rule m®@z — v(zx)-m.
To justify the isomorphism (82), we will identify Homg (R /a, R) with the a-torsion submodule
RJ[a] of R via the isomorphism ¢ +— ¢(1). For any morphism f: A — B of finitely generated
free R-modules one has a commutative diagram

Aor (Rfa) — s Bog (R/a)
1= 1~
Homg (R/a, A) LN Hompg (R/a, B),

where the vertical isomorphisms are given by v4. Applying the functors — ®% (R/a) and
Homg (R/a, —) to the representative (84) we therefore see that the collection of maps (vg;)jez
defines an isomorphism of the form (82).

Assuming C*® is acyclic in degrees less than i, we may set @ := coker{C*~! — C’} to obtain

the representative 0 — Q 2 o+l L of O, Consequently, C* ®% (R/a) is represented by
0— Qer (R/a) = C' @z (R/a) — .... In particular, we get the vertical dashed arrow on
the left hand side in the diagram

0 —— Hi(C*) Q iy ol
i VQT Vci+1T

0 — H(C* ®‘]7Lz (R/a)) —— Q®r (R/a) 98, it g (R/a).

If we can prove that v is injective, then it will follow that the dashed arrow is injective as well,
and this will prove the last part of claim (b). To do this, let [ be the least integer with Cl#£0
and set Q7 := coker(C7 — C7='} for all j € {I,...,i—1}. We will then prove by induction on j
that vgs: Q7/a@Q? — Q7[a] is an isomorphism and Exty (R/a,Q?) =0 for all j € {I,...,i—1}.
Taking j =4 — 1, this then proves the claimed injectivity of vg.

For the base case of the induction we note that, because C? = 0 for all j > [ and C* is acylic
in degrees less than i, we have an exact sequence 0 — C! — C'"! — Q' — 0. The long
exact sequence obtained from applying the functor (—)[a] = Homg(R/a, —) then shows that
Ext’, (R/a,Q') = 0 for all j > 1, and that we have a commutative diagram of the form

Clor (R/a) — C"1og (R/a) —— Q' ®@r (R/a) —— 0
VC’Z\L: Vcl—l\Lﬁ \Lle
C'la] —— C" o] ———— Q'[a] ———— 0.
It then follows from the Five Lemma that also v is an isomorphism. This proves the base case
of the induction, and the inductive step follows by the same argument when instead applied

to the exact sequence 0 — Q7 — CV=2 — @Q/=! — 0 for some j € {l +1,...,i} such that the
claim has already been proven for all j/ < j. ]

The following technical consequence of Lemma (B.13) will be useful later on.

(B.14) Lemma. Let R be a one-dimensional Gorenstein ring and a C R an ideal such that
also R/a is a one-dimensional Gorenstein ring. We also suppose to be given a complex C*® €
DPe™(R) that admits a representative of the form (69) and assume that

pdr(H'(C*)ier) <1 and  pd(gya)(H' (C*)ir @R (R/a)) < 1. (85)
Then there is an isomorphism

Fittf (H'(C®)ior)" ®r (R/a) = Fitt(r o) (H' (C* @ (R/a))i0r)"

Proof. Consider the complex D*® := RHomp (C*®, R). By dualising (69) we see that H'(D®) = 0
for all ¢ > 0 and so an application of Lemma (B.13) (a) shows that

H°(D*) @r (R/a) = HY(D* ®F (R/a)). (86)
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In addition, we may use the spectral sequence
Ey = ExtR(H7(C*),R) = E™ =H"(D)
to deduce that there is an isomorphism H°(D®) = ExtL (H'(C*®), R). It therefore follows from
Lemma (B.12) that
HO(D®) = H'(CE,,)". (87)
Now, the assumption (85) implies that Fitt% (H'(C*®),,) is a principal ideal (z) generated by
an element x € R that is a nonzero divisor both in R and R/a. By a standard property of
Fitting ideals one has the exact sequence
Tor{(R/(x), R/a) — Fitt (H'(C*)iy) @ (R/a) — Fitt(g oy (H'(C*) oy ®% (R/a)) = 0
in which the first term is isomorphic to (R/a)[z] and so vanishes because x is a nonzero divisor
in R/a by (85). Thus, the second arrow is an isomorphism and so we have a composite
isomorphism
Fitti (H'(C*)ior)” ®r (R/a) = Homg(Fittx (H'(C*)i,), R/a)
Homp (Fittk (H'(C*)ior) ®% (R/a), R/a)

12

L Hom o (Fitt (H(D*)) ©x (R/a), R/a)

(86) .

= Fitt{ o (H(D* @% (R/a)))

= Fitt{g /o) (H'(C* O (R/))ior)"
where the first isomorphism holds because Fitt% (H'(C*)y,) is a free R-module of rank one
and the last isomorphism is (87) with R and C® replaced by R/a and C* ®% (R/a). (Note
that also the complex D® ®z (R/a) = RHom g /q)(C* @3 (R/a), R/a) admits a representative
of the form (69).) This concludes the proof of the lemma. O

(B.15) Remark. The proof of Lemma (B.14) shows that if, in the setting of said result,
dim(R) = 1, then there is a canonical isomorphism H'(C*®),. ®@% (R/a) 2 H(C*®% (R/a)),-

Let a € R be an ideal and C* € DPf(R) a complex. By tensoring the exact sequence
0—a—R—R/a— 0, with C*, we then obtain an exact triangle in D(R) of the form

C*®%a c* C* @r (R/a) —— (C* &% a)[1]. (88)

The long exact sequence in cohomology associated with this triangle allows for the following
definition.

(B.16) Definition. Let C* € DP'(R) be a complex that is acyclic in degrees greater than 2.
The ‘Bockstein morphism’ associated to C* and an ideal a C R is defined to be the composite
map

Beea: HY(C® @% (R/a)) — H*(C* ®@% a) = H*(C*) @r a
Here the first arrow is the connecting homomorphism of the triangle (88) and the second arrow
is the isomorphism (81) with M = a.

We shall apply this construction in the setting of Definition (B.2). More precisely, we now
assume we are given a quotient )’ of H?(C*®) that is of the form

d/
V' = EPR/w) (89)
=1

for an integer d’ > 0 and ideals ay,...,ay of R.
For every i € {1,...,d'}, we write z}: Y’ — R/a; for the projection onto the i-th component
and use this to define the map

B: H(C* @r (R/a)) 2C2=,

— S H)(CY9ra—)Y g a —> a/a;a.
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To state the main result of this subsection, we now assume that C*® is acyclic outside degrees 1
and 2, and that there is an R-linear isomorphism v: R/a — R[a]. For every f € H'(C*®)* we
may then define an associated map f” € H'(C*® ®% (R/a))* as the composite map

HY(C* 9r (R/a)) &% Homp (R /a, H'(C*)) L Homg (R/a, R) “— R/a.

Given f € Az H(C*)* for some integer s > 0, we write f” for the image of f under the map
ANr HY(C*)* — AR /a HY(C®* ®r (R/a))* induced by sending f1 A -+ A fs = f¥ A=A f2.

(B.17) Proposition. Let R be a quasi-normal ring and C* € D" (R) a complex that admits
a standard representative with respect to a surjection k: HZ(C') — Y onto a module V' of the
form (89), and write X for its standard ordered set of generators. We also assume a; = 0 if
i€ {l,...,d} for somed < d. Let a be an ideal containing agy; for alli € {1,...,d —d}, and
write B (resp. B') for the canonical ordered R-basis (resp. R/a-basis) of Y = @?:1 R (resp.
of Y @r (R/a)). Settingn :=d+n1—(no+nz2), s =d —d, and 2 = H?lzdﬂ a;, the following
claims are then valid.

(a) For every a € Detgr(C®)™! and f € N H(C®)*, one has a containment
f(@ce s (a)) € Fittg (H'(C*)yo,)" @r A

(b) Assume that R = R/a is a one-dimensional Gorenstein ring, set C° = C* ®% R,
and suppose that de(Hl(C’ Vior) < 1. For every i € {1,...,s} there is a morphism
Bayi € HomR(Hl(C ), R) ®7 (a/aq4;a) such that the natural map

Homﬁ(Hl(é ), R) @7 (a/agy;a) — HomR(Hl( *), a/ag,qa)
sends Bdﬂ- to Bqsi, and the maps (5d+z’)1<i<s induce a map
(N ic,Pari): (T om /\f HY(C'))" = (Log N H'(C))" @x (a°/a),
where I = Fitt (Hl(C Vior)-

(c) Assume R and R are one-dimensional Gorenstein rings and that (85) is valid so that,
by Lemma (B.14)), one has an isomorphism

Fitth (H'(C*),)* @r (a°/a) = I* Rz (a®/a2). (90)
Then, for every a € Detr(C®)~! and f € /\%J“d H(C*)* one has an equality
f@oe (@) = (1™ - (f o \,__ Biri)(@ge (@)
in (90), where @ denotes the image of a under the canonical map

Detr(C*)™! — Detr(C*) ™! @r R = Det(C") .

1<i<s

Proof. This is a generalisation of the argument of [Bur07, Lem. 10.2] (see also [BKS16, Lem. 5.22]).
By assumption, one has a surjective map H?(C*®) — ), from which it follows that Fitt% (H?(C*))
is contained in Fitt%()”) = 2. The first claim therefore follows from Proposition (B.10) (b).

To prove claim (b), we fix a standard representative F’ 0 %, g1 O, Fy of C* w1th respect to

x and X. We also set F' := F' @ R for every i € {0,1,2}, write 9;: F = F T for the map
1nduced by 0;, and note that F' 7 80 7' % T, is a standard representative for C°. Define
Q=F / 7 and note that taking R-linear duals leads to an exact sequence

0—Q" = (F) 2% (F') - ExtL(Q,R) — 0.

We have seen in the proof of Proposition (B.10) that the natural map Extlﬁ(@, R) — Extlﬁ(H L(C*, R)

is a pseudo-isomorphism, and hence an isomorphism because we are assuming R to be one-
dimensional. Our assumption that EX‘U%(H L(C®),R) is of projective dimension at most one

therefore implies that the kernel of 5; is projective (by Schanuel’s lemma). From the above
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exact sequence we conclude that @*, and hence also @**, is R-projective. In particular, for
every finitely generated R-module M, the central vertical map in the following commutative
diagram is an isomorphism.

871(?1)* Qr M —— @* QM ——— Hl(é.) QM —— 0
il I~ 1 (91)
0 —— Homg (9, (F'), M) —— Homgp(Q, M) —— Homg(H(C"), M)
To justify exactness of the top line of this diagram we recall that if N is a finitely generated

torsion-free R-module, then Ext%(N ,R) vanishes because R is a one-dimensional Gorenstein
ring. Dualising the exact sequence

0= H(@C) >0 —=a(F)—0 (92)
and tensoring the resulting exact sequence with M then gives the top line of the above diagram.
The bottom line, on the other hand, is obtained by applying the functor Homz(—, M) to (92).
From the diagram (91), applied with M = a/a4;;a, we see that it suffices to prove that 34; can

be lifted to Homﬁ(@, a/agria) in order to define 344;. To do this, we note that by definition
Ba+; coincides with the composition of the snake lemma map arising from the diagram

a®r Q y Q y QR R —— 0
1o 1o 1o
0 —— a®p F? F? y F2@r R —— 0

composed with ;. ;. By condition (iv) in Definition (B.3) one therefore has
Pari(m) = (bzp; 0 01)(m)  mod agiia (93)

ifm e H' (6’) is the image of m € F'' under the surjective map F! — F o Q. This definition
clearly extends to @ and so by the above discussion we obtain the desired lift 51 of Bgy; to
HY(C")* @x (a/agyia).

For every i € {1,...,s} we may then write Bari = Z;”:l 1; ® ¢; for suitable n; € IN, 9; €
H'(C®)*, and ¢; € a/agi;a. Given this, we may define the map A, ;< B4+; in the statement
of claim (b) by means of o

(/\1§i< Bd-ﬁ-z A®@p): E Z(D)\®¢jl 'A?,/st/\go)(@HCji

Jji=1 Js=1 =1
for all ® € (I @z N> H'(C")*)".
To prove claim (c), we fix a € Detg (C®)~!, set J = Fitth (H*(C*®)y,), and and regard wcs % (a)
as an element of (J ®r /\nR+d(Fl)*)*. If we fix an R-basis ¢y, ..., cp, of FU, then we can write
a as (Njcicng ¢) © @ @ (Ni<icp, bF) for some o’ € AR F'. By definition of wce x5, one then
has for all A\® ¢ € J @r Ay ° Fy that

Torm(@(®9) = (1D o A GAN (6o d) (@)
= (L (e (A B0 A ) (2)

dr1<i<d
with the abbreviation

= . * * !
2= (A /\KKMCZ A /\dlﬂgigm(bl o)) (d).
On the other hand, for all A ® ¢ € I ®7% /\”+S( ) one has

T g (@A @ @) = (—1)" 271 (X /\@gnocf A /\d’+1§i§n2 (bj o d1))(a') mod a
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with n/ := n + s. Here we have used that ' 5 F' = F is a standard representative for c*
with respect to (%,B'), where &: H2(C") — )’ is the map induced by . Writing 7 for the

canonical projection 2 - (J @z AR (F')*)* = A @5 (I @7 /\%(Fl

m(weem(a)) = (1" - (| __ (bii 0 01))(@ge (@) mod a2

by comparing with the definition of z. Given this, the equality claimed in (b) follows from (93)
and Lemma (B.19) below. O

)*¥)*, we arrive at

1<i<s

(B.18) Remark. The maps ,51 could in principle be not uniquely specified by their properties
described in Proposition (B.17) (b). This ambiguity will however not cause any problems in
any of the applications of Proposition (B.17) (¢) in the main body of the article.

(B.19) Lemma. Let M be an R-module and denote the canonical projection M — M @ (R/a)

by mar. Assume there is an R-linear isomorphism v: R/a — R[a] and, for every f € M*,

define fV: M ®@r (R/a) — R/a by f*(m @ 7r(r)) == v (f(w(rr(r)) -m)). Then one has
mr(f(m)) = f"(7p(m))  inR/a

for every f € M*.

Proof. We may calculate that
fr(mu(m)) = f(m@rr(1) = v (f(v(rr(1)) - m)) = v (v(7R(1)) - f(m))
= v (v(rr(1) - f(m))) = 7R (1 - f(m)) = 7r(f(m)),

as claimed. O
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