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We prove a substantial part of conjectures of Mazur and Tate that refine the
conjecture of Birch and Swinnerton-Dyer. Our approach, which also leads to some
results even finer than the predictions of Mazur and Tate, is via the ‘rank-zero
component’ of the relevant case of the equivariant Tamagawa Number conjecture .

1. Introduction

1.1. Refined conjectures of ‘Birch–Swinnerton-Dyer type’

The conjectures of Birch and Swinnerton-Dyer, originating from [BSD65] and developed into
their final form by Tate in [Tat95], connect arithmetic invariants of an elliptic curve E defined
over Q with the order of vanishing and the leading term of its Hasse–Weil L-series at s = 1.
These arithmetic invariants include the rank, as an abelian group, of the group of Q-rational
points E(Q) of E and the cardinality of the, conjecturally finite, Tate–Shafarevich group XE/Q

of E. For a more detailed introduction, and further reading, the reader may for example consult
the survey articles [BST21b; Gro11; SD67; Tat95; Wil06; Zha14].
In the 1980s Mazur and Tate formulated refinements of this conjecture that relate a certain
group-ring-valued element θMT

K , which is constructed from modular symbols and interpolates
the values of twisted Hasse–Weil L-series, to Galois-equivariant invariants of the base change of
E to an abelian number field K. In particular, the element θMT

K is expected to encode precise
information about the Galois module structure of E(K) and XE/K .
It is convenient to subdivide the predictions of Mazur and Tate into three separate statements
that we will refer to as as their ‘order of vanishing’, ‘weak main conjecture’, and ‘leading
term’ component. Each of these components has been very influential and has inspired a
range of similar conjectures in a variety of different contexts. This includes the analogue
for Heegner points formulated by Darmon [Dar92] and extended by Bertolini and Darmon
[BD94], conjectures in the setting of the multiplicative group such as the ‘integral Gross–Stark
conjecture’ (from [Gro88]) and its refinements and generalisations due to Tate [Tat04], Darmon
[Dar95], Sano [San14], and Mazur–Rubin [MR16], as well as an analogue for the Rankin–Selberg
convolution of two modular forms formulated by Cauchi and Lei [CL22]. Generalisations to
modular forms of higher weight have moreover been studied by Ota [Ota23], Kim [Kim23], and
Emerton–Pollack–Weston [EPW25]. Kurihara [Kur02, Conj. 0.3] has also formulated a ‘strong
main conjecture’ as a strengthening of the ‘weak main conjecture’ of Mazur and Tate, and
results towards this are due to Kurihara [Kur02], Pollack [Pol05], and Kim–Kurihara [KK21].
To describe the conjectures of Mazur and Tate in more detail, we set G = GK := Gal(K/Q)
and let R be a ring with the property that R[G] contains θMT

K . Work of Stevens [Ste89] shows
that one can often take R = Z in practice1, and a self-contained discussion of this integrality
question is given in Appendix A.
Write IR,G for the augmentation ideal of R[G] and S(E/K) for the ‘integral Selmer group’
defined by Mazur and Tate in [MT87, § 1.7]. If XE/K is finite, then S(E/K) is a finitely
generated Z[G]-module with the property that, for every prime number p, the ‘p-component’

1Recent numerical computations of Llerena-Córdova [LC24] suggest that one should however always choose R
big enough such that |E(K)tor| ∈ R× in order for the conjectures of Mazur and Tate to be valid.
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S(E/K)⊗Z Zp identifies with the Pontryagin dual Sel∨p,E/K of the classical p-primary Selmer
group Selp,E/K which fits into the fundamental exact sequence (cf., for example, [Sil09, §X.4])

0 (XE/K [p∞])∨ Sel∨p,E/K HomZp(E(K)⊗Z Zp,Zp) 0. (1)

We also write r := rkZ(E(Q)) for the rank of E and sp(mK) for the number of primes dividing
the conductor mK of K at which E has split-multiplicative reduction.

(1.1) Conjecture (Mazur–Tate). The following claims are valid.

(a) (‘order of vanishing’, [MT87, Conj. 4]) θMT
K ∈ Ir+sp(mK)

R,G

(b) (‘weak main conjecture’, [MT87, Conj. 3]) θMT
K ∈ Fitt0R[G](S(E/K)⊗Z R)

This conjecture holds for a fixed ring R if and only if its ‘p-part’, namely the conjecture for
R ⊗Z Zp, holds for every prime number p. In this article, we will focus on the p-parts of
Conjecture (1.1) for prime numbers p that satisfy the following mild hypothesis, which, for
any given pair (E,K), is known to be valid for all but finitely many prime numbers p (see
Remarks (1.3) and (2.11) for more details). In the statement we write Ẽ for the reduction of
E modulo p.

(1.2) Hypothesis. Assume p > 3 is a prime number with the following properties:

(i) The image of the Galois representation ρE,p : Gal(Q/Q) → Aut(TpE) ∼= GL2(Zp) at-
tached to E contains SL2(Zp).

(ii) At least one of the following conditions is satisfied:

(a) K contains no primitive p-th root of unity.

(b) E has potentially good reduction at p and Ẽ(Fp) contains no point of order p.

(iii) If E has additive reduction at p, then p is unramified in K.

In particular, p is allowed to be an ‘anomalous’ prime (in the terminology used by Mazur
[Maz72]) if Hypothesis (1.2) (ii) (a) is valid.

(1.3) Remark. If E does not have CM, then Serre has proved in [Ser72] that ρE,p is surjective
for all but finitely many prime numbers p, and asked if in fact ρE,p is always surjective when
p > 37. It is conjectured that surjectivity is implied by p ̸∈ {2, 3, 5, 11, 13, 17, 37} and the
following is known in this direction.

• Zywina has proved in [Zyw22, Thm. 1.10] that a prime that fails surjectivity is bounded
from above by max{37, N}, where N denotes the conductor of E.

• If E is a semi-stable elliptic curve and p ≥ 11, then ρE,p is surjective by a result of Mazur
[Maz78, Thm. 4].

• Zywina has proved in [Zyw22, Thm. 1.5] that if ρE,p is not surjective (with p > 13) and
ℓ ̸= p is a prime at which E does not have potentially good reduction, then ℓ ≡ ±1
mod p and p divides the Tamagawa number Tamℓ at ℓ.

To state our first main result, we set rp := rkZp(Sel
∨
p,E/K) and write #: Zp[G]→ Zp[G] for the

involution that sends σ ∈ G to σ−1.

(1.4) Theorem. Fix an abelian number field K of conductor m. If the pair (K, p) satisfies
Hypothesis (1.2), then the following claims are valid.

(a) θMT
K ∈ Irp+sp(m)+2c(p)(K)

Zp,G
with the integer c(p)(K) ≥ 0 defined in Remark (1.5) (c) below.

(b) θMT,#
K ∈ Fitt0Zp[G](Sel

∨
p,E/K).

(1.5) Remark. (a) The adornment # in Theorem (1.4) (b) can often be removed. To ex-
plain this, we write D(m) := gcd(m,N) and δ(m) := gcd(D(m), N

D(m)). If δ(m) = 1,
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which is automatically satisfied if E is semistable, then θMT
K satisfies a ‘functional equa-

tion’ (stated in Remark (2.5)) that implies that θMT
K and θMT,#

K only differ by a unit
in Z[G]. In this case, therefore, Theorem (1.4) (b) also shows that θMT

K belongs to

Fitt0Zp[G](Sel
∨
p,E/K). However, the ideals generated by θMT

K and θMT,#
K may not be equal if

δ(m) > 1 and the authors would like to thank Juan-Pablo Llerena-Córdova for providing
them with numerical examples where they are indeed different.

(b) The perhaps surprising appearance of the factor 2 in Theorem (1.4) (a) can be motivated
conceptually as follows. Write ord(θMT

K ) for the largest non-negative integer n such that
θMT
K belongs to InZp,G

. By an observation of Mazur and Tate [MT87, (1.6.4)], the known

validity of the parity conjecture [DD10] then combines with the functional equation for
θMT
K to imply, if p is odd, that ord(θMT

K ) ≡ rp mod 2.

(c) To define the integer c(p)(K) that appears in the statement of Theorem (1.4) (a), we set
aℓ := ℓ + 1 − |Ẽ(Fℓ)| for every prime number ℓ. We also define 1N (ℓ) = 1 if ℓ ∤ N and

1N (ℓ) = 0 otherwise. We then let f
(p)
ℓ,K/Q denote prime-to-p part of the residue degree of

ℓ in K/Q and define the set (see also Lemma (4.8) for an alternative characterisation)

C
(p)
× (K) := {ℓ : ℓ ̸≡ ζ(aℓ − 1N (ℓ)ζ) mod p for all ζ ∈ Qp

×
with ζ

f
(p)
ℓ,K/Q = 1}|

as well the subsets

C
(p)
2 (K) := {ℓ ∤ N : ℓ ̸= p, ℓ ∈ C(p)

× (K), aℓ = 1, ℓ | m, ℓ2 ∤ m}

C
(p)
0 (m) := {ℓ | N : ℓ ̸= p, aℓ = 0, ℓ2 | m}

as well as their cardinalities c
(p)
2 (K) := |C(p)

2 (K)| and c(p)0 (m) := |C(p)
0 (m)|. Given this,

we may then define

c(p)(K) := c
(p)
2 (K) + c

(p)
0 (m).

To the knowledge of the authors, Theorem (1.4) (a) is the first general result that combines
the contributions from both the rank of Sel∨p,E/Q and the presence of trivial zeros. That a
refinement of Conjecture (1.1) (a) of this shape may hold was first suggested by Ota, who

proved in [Ota23, Thm. 1.1] that θMT
K ∈ I

min{rp,p}
Zp,G

if one assumes Hypothesis (1.2) (i) and
certain local conditions at p and at primes ℓ that divide the conductors of K or E. If all

split-multiplicative primes ℓ dividing m belong to C
(p)
× (K) and p is big enough, then this also

easily implies θMT
K ∈ Irp+sp(m)+c

(p)
2 (K)

Zp,G
(cf. [Ota18, Cor. 6.3]).

Using entirely different methods, Bergunde and Gehrmann [BG17] have also proved that θMT
K

belongs to I
sp(m)
R,G if K is a real abelian field (which settles Conjecture (1.1) (a) in this case, if

r = 0).
As for Conjecture (1.1) (b), the following results have previously been obtained assuming Hy-
pothesis (1.2) (i) and a slight strengthening of (1.2) (ii) (b), where p is also assumed to be of
good reduction for E.

• If one also assumes the vanishing of a relevant µ-invariant and that p does not divide
the product of Tamagawa numbers Tam(E) :=

∏
ℓ|N (E(Qℓ) : E0(Qℓ)), then Kurihara

has proved that the image of θMT
K in Zp[GK ] belongs to the annihilator of a relevant

Selmer group for every finite abelian p-extension K/Q of conductor m coprime to pN
(see [Kur14, Rk. 1.2.6]) and to Fitt0Zp[G](Sel

∨
p,E/K) if E has good ordinary reduction at

p, the prime p is tamely ramified in K, and suitable additional assumptions are satisfied
(see [Kur03, Thm. 10.]).

• Results of Kataoka (see [Kat21, Thm. 1.8] and [Kat22, Thm. 1.6]) combine to imply the
p-part of the ‘weak main conjecture’ [MT87, Conj. 3] holds if E has good reduction at
every ℓ | pm and one assumes certain further local conditions such as the vanishing of
H0(Q(ζmp∞)⊗Q Qℓ, E[p∞]) for every ℓ | pm.
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If K is a subfield of the cyclotomic Zp-extension of Q, then the result of Theorem (1.4) (b) has
previously been proved by Emerton–Pollack–Weston [EPW25]. (We note that the main result
of loc. cit. also involves the involution #.)
To state the leading term conjecture of Mazur and Tate, we denote the Tate multiplicative
period of E at a prime ℓ of split-multiplicative reduction by qE,ℓ ∈ Q×ℓ , and write Tamℓ :=
ordℓ(qE,ℓ) for the Tamagawa number of E at ℓ. We also fix an abelian number field L with

Galois group GL := Gal(L/Q), write D(ℓ)
L ⊆ GL for the decomposition group at ℓ, and let

recℓ : Q
×
ℓ → D

(ℓ)
L ⊆ GL denote the associated local reciprocity map.

(1.6) Conjecture (‘leading term’, [MT87, Conj. 6]). Suppose the conductor m′ of L is a
product of primes at which E has split-multiplicative reduction. Then one has

θMT
L ≡ θMT

Q ·
∏

ℓ|m′

(
Tam−1ℓ · (recℓ(qE,ℓ)− 1)

)
mod I

sp(m′)+1
R,GL

.

The approach of Mazur and Tate is directly motivated by the earlier ‘p-adic Birch–Swinnerton-
Dyer conjecture’ of Mazur–Tate–Teitelbaum (from [MTT86]) and by experimental evidence (see
[MT87, § 3.2] and, more recently, the articles of Portillo-Bobadilla [PB19] and Llerena-Córdova
[LC24]). Indeed, if m′ = ℓn for some split-multiplicative prime ℓ, then the ‘ℓ-part’ (so R = Zℓ)
of Conjecture (1.6) is a special case of the Mazur–Tate–Teitelbaum conjecture and therefore
follows from the result of Greenberg and Stevens [GS93] if ℓ ≥ 5 (see also [Kob06]). Note that,
due to its Iwasawa-theoretic nature, this approach only sees the ‘ℓ-part’ of Conjecture (1.6)
(hence concerns the component on which ℓ is wildly ramified) and so misses much of the finer
aspects of these congruences. The only theoretical evidence in an ℓ-tamely ramified setting (still
assuming m′ = ℓn) that has hitherto been available in the literature is the result of de Shalit
in [Sha95] that applies to elliptic curves of prime conductor ℓ and is proved via an extension
of the strategy of Greenberg and Stevens (see also recent work of Lecouturier [Lec23] in this
direction).
For a natural number m we let Fm denote the m-th cyclotomic field and write θMT

m := θMT
Fm

. We
also let Sp(m) denote the set of prime numbers dividing m at which E has split-multiplicative
reduction.
Our second main result is a refinement of Conjecture (1.6) and reads as follows.

(1.7) Theorem. Let L be an abelian number field of conductor m′ and fix a prime number p
such that the pair (L, p) satisfies Hypothesis (1.2). Let K be a subfield of L and take S′ ⊆ Sp(m′)
to be a subset of primes which split completely in K. SetM ′ := m′

∏
ℓ∈S′ ℓ− ordℓ(m

′), and suppose

that all primes ℓ dividing M ′ satisfy ℓ ∈ C(p)
× (L).

Then θMT
L belongs to A := (

∏
ℓ∈S′ I

Zp,D(ℓ)
L

)Zp[GL] and one has

θMT
L ≡ πFM′/K(θMT

FM′ ) ·
∏

ℓ∈S′

(
Tam−1ℓ · (recℓ(qE,ℓ)− 1)

)
mod IZp,HA

with H := Gal(L/K) and FM ′ := Q(ζM ′) the M ′-th cyclotomic field.

(1.8) Remark. (a) Using the ‘norm relations’ in Proposition (2.4), one can explicitly com-
pute the element πFM′/K(θMT

FM′ ) that appears in Theorem (1.4) (c) as a linear combination

of the elements θMT
F with F ranging over a suitable set of subfields of K. If the conductor

m of K and M ′/m are coprime, then one may in fact take this set to be simply {K}.
(b) If E(Q) has positive rank r > 0, then the result of Theorem (1.7) is trivial (by The-

orem (1.4) (a)). In any such case, Mazur and Tate predict in [MT87, Conj. 4] a finer

congruence for θMT
K modulo I

r+sp(m)+1
R,G . If r = 1 and sp(m) = 0, results towards this

conjecture have recently been obtained by Burns, Kurihara, and Sano in [BKS25]. We
expect that their approach can be combined with ours in order to prove the ‘p-part’ of

the full congruence modulo I
r+sp(m)+1
Zp,G

, for primes p as in Theorem (1.4), up to a unit

in Z×p if the Birch–Swinnerton-Dyer conjecture holds for E and without ambiguity if

4



E validates the ‘generalised Perrin-Riou conjecture’ from [BKS25]. In the generality of
Hypothesis (1.2), a result of this kind would require an extension of the comparison of
height pairings carried out by Burns and Maćıas Castillo in [BMC24, Thm. 10.3].

To end the discussion of our main results, we summarise some of the consequences towards
the ‘p-parts’ of the conjectures of Mazur and Tate (that is, the statements of the conjectures
after extending scalars from R to R ⊗Z Zp) in their original formulations from [MT87] in
the following corollary. This result is obtained by taking K to be the maximal real subfield
F+
m of the m-th cyclotomic field Fm in Theorem (1.4) (and taking note of Remark (1.5) (a)),

and K = Q and L = F+
m′ with m′ a product of split-multiplicative primes in Theorem (1.7).

Note that, in these cases, condition (ii) (a) in Hypothesis (1.2) is always satisfied and, if E is
a semistable non-CM elliptic curve, then Hypothesis (1.2) (i) is satisfied by Remark (1.3) and
Hypothesis (1.2) is empty.

(1.9) Corollary. If p ≥ 11 is a prime number and E is a semistable elliptic curve without
CM, then the following claims are valid.

(a) The ‘p-part’ of the ‘order-of-vanishing component’ of [MT87, Conj. 4], and hence also
the ‘weak vanishing conjecture’ [MT87, Conj. 1], holds.

(b) The ‘p-part’ of the ‘weak main conjecture’ [MT87, Conj. 3] holds.

(c) The ‘p-part’ of the ‘leading term conjecture’ [MT87, Conj. 6] holds.

1.2. Overview of proof strategy

The approach we adopt in this article is motivated by the ‘Tamagawa Number Conjecture’
of Bloch and Kato [BK90], which, when specialised appropriately, is well-known to recover
the Birch–Swinnerton-Dyer conjecture (see [Kin11; Ven07; BF24] for details). Since the
Mazur–Tate conjectures are themselves an equivariant refinement of the conjecture of Birch–
Swinnerton-Dyer, it is natural to view them within the framework of the equivariant refinement
of the Tamagawa Number Conjecture. This refinement, formulated independently by Fontaine–
Perrin-Riou [FPR94] and Kato [Kat93] in the commutative setting and later generalised to
motives with non-commutative coefficients by Burns and Flach [BF01], is commonly referred to
as the ‘equivariant Tamagawa Number Conjecture’ (eTNC). While results in [BMC24; BKS25]
suggest there should exist a link between the eTNC and the Mazur–Tate conjectures, the full
nature of this connection has hitherto remained unclear.
In this article, we establish a precise link between the relevant case of the eTNC and the con-
jectures of Mazur and Tate that sheds new light onto their relationship. With ‘one inclusion’ in
the eTNC at a prime satisfying Hypothesis (1.2) recently proved in work of Burns and the first
author [BB25] via an enhancement of the general theory of Euler systems and Kato’s Euler
system (from [Kat04]), this new connection leads directly to Theorems (1.4) and (1.7).
To explain this strategy in a little more detail, we write zKato = (zKato

m )m∈N for the col-
lection of cohomology classes constructed by Kato in [Kat04] (and adapted to our needs in
Theorem (2.8)). Here each class zKato

m belongs to H1(OFm [1/Nmp],TpE) and is linked to the
values of the twisted Hasse–Weil L-series at s = 1 via Kato’s explicit reciprocity law. This
reciprocity law can be reformulated (cf. Theorem (2.10)) in such a way that there is a suitable
local cohomology class Qm in

⊕
v|pH

1(Fm,v,VpE) with the property that

Pm(zKato
m , Qm) = θMT

m .

Here Pm(·, ·) is induced by the cup product pairing on
⊕

v|pH
1(Fm,v,VpE) (see § 2.2 for a

precise definition).
The local class Qm has been given a very explicit description by Otsuki in [Ots09] (by building
on earlier work of Kurihara [Kur02]) that, amongst other things, enables us to control the de-
nominators of Qm under condition (1.2) (ii). More precisely, we use Honda theory to construct
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a suitable analogue of the ‘Artin–Hasse exponential’ and show that Qm can be decomposed
as the value of this exponential times the inverses of the relevant Euler factors Eulℓ(σ̃ℓ), and

certain elements ν
(ℓ)
m of Zp[Gm]. The elements ν

(ℓ)
m each encode the contribution of a prime

ℓ ̸= p towards Otsuki’s construction and are amenable to explicit calculations. In the case of
a split-multiplicative prime ℓ, they are also given a cohomological interpretation in § 5 in the
following way. For big enough m, one can define a canonical map

ϑ(ℓ)m : DetZp[Gm]

(⊕
v|ℓ
RΓ(Fm,v,Zp(1))

)−1 → Qp[Gm]

such that ν
(ℓ)
m Eulℓ(σ̃ℓ)

−1 belongs to the image of this map. This approach is very much in the
spirit of the eTNC since its relevant component implies that a similarly defined map,

Θm : DetZp[Gm](RΓ(OFm [1/Nmp],TpE))−1 → H1(OFm [1/Nmp],VpE),

sends a Zp[Gm]-basis of DetZp[Gm](RΓ(OFm [1/Nmp],TpE))−1 to zKato
m . In this direction, the

equivariant theory of Euler systems, initiated by Burns, Sakamoto, and Sano in [BSS25] and
extended by Burns and the first author in [BB25], can be used to prove that zKato

m belongs to
the image of Θm if Hypothesis (1.2) is valid.
To make this latter statement more explicit, one would ideally replace the étale cohomology
complex RΓ(OFm [1/Nmp],TpE) with the ‘finite-support cohomology’ complex of Bloch and
Kato, the cohomology groups of which are classical objects such as Sel∨p,E/K . This is also the
strategy used in [Kin11; Ven07; BF24] to relate the Tamagawa Number Conjecture with the
Birch–Swinnerton-Dyer conjecture. However, a significant obstacle arises when attempting to
extend these arguments to the equivariant setting: The finite-support cohomology complex is
rarely perfect as a complex of Zp[Gm]-modules, making it unavailable for equivariant compu-
tations. To overcome this, we carefully construct certain auxiliary Selmer complexes in § 4 that
are perfect and sufficiently approximate the finite-support cohomology complex. By applying
purely algebraic results of the nature proved by Burns and Sano in [BS21, App.] and extended
in Appendix B, one may then prove rather generally that one has the inclusion∏

ℓ|m
(ν(ℓ)m Eulℓ(σ̃ℓ))

# · Pm(Θm(a), Qm) ∈ Fitt0Zp[Gm](Sel
∨
p,E/Fm

) (2)

for every a ∈ DetZp[Gm](RΓ(OFm [1/Nmp],TpE))−1. This, when combined with the aforemen-
tioned result on the eTNC, then directly leads to Theorem (1.4) (b).

To prove Theorems (1.1) (a) and (1.6), we ‘combine’ the maps Θm and ϑ
(ℓ)
m . That is to say, we

define a certain Nekovář–Selmer complex SC•m with the local condition at a split-multiplicative
prime ℓ given by

⊕
v|ℓRΓ(Fm,v,Zp(1)) such that the left hand side of (2) belongs to the image

of a certain map

DetZp[Gm](SC
•
m)−1 → Zp[Gm].

In the context of Iwasawa theory, Nekovǎŕ has previously observed in [Nek06, § 0.10] that a
complex of this kind detects the presence of trivial zeroes.
Theorem (1.7) is then obtained via a calculation of ‘Bockstein morphisms’ attached to the com-
plex SC•m. These calculations are in many ways parallel to those previously performed in the
context of the multiplicative group by Burns [Bur07, § 10] and Burns–Kurihara–Sano [BKS16,
§ 5]. The definition of Bockstein morphisms is directly inspired by the ‘algebraic height pair-
ings’ introduced by Nekovǎŕ in [Nek06, § 11], and we discuss their general formalism in §B.3.
It might be worth noting that, to date, the authors have found such a cohomological interpreta-

tion of ν
(ℓ)
m Eulℓ(σ̃ℓ)

−1 only for primes ℓ which are of split-multiplicative reduction for E. In the
absence of a similar interpretation for the remaining primes ℓ dividing Nmp, we have to impose
the condition ℓ − aℓ + 1N (ℓ) ̸≡ 0 mod p in Theorem (1.7) in order to ensure the associated
Euler factors are invertible in Zp[Gm]. It would therefore be highly desirable to find a uniform
cohomological intepretation of the constructions made by Otsuki in [Ots09], likely within the
framework of Kato’s ‘local ε-constant conjecture’ [Kat; FK06] (see also Remark (5.3) in this
direction).
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1.3. General notation

For the convenience of the reader, we collect some general notation that we use throughout the
article.

Algebra Given an abelian group A, we write Ator :=
⋃

n∈NA[n] for its torsion subgroup, and
Atf := A/Ator for its torsionfree quotient. For any ring R, we then write R[A] :=

⊕
a∈AR for

the group ring of A over R and denote by x# the image of an element x ∈ R[A] under the
involution #: R[A] → R[A] that is defined by R-linear extension of the rule a 7→ a−1 for all
a ∈ A. IfM is an R[A]-module, thenM# will denoteM with A-action given by a ·m := a# ·m.
The completed group ring of A is denoted as RJAK := lim←−U⊆AR[A/U ] with U ranging over all

finite-index subgroups of A. Given a subgroup U of A, we write IR(U) := ker{RJUK → R}
for its absolute and IR,U := IR(U)RJAK = ker{RJAK→ RJA/UK} for its relative augmentation
ideal. (If the coefficient ring is clear from context, then we suppress the subscript R.)
We write M∨ := HomZ(M,Q/Z) for the Pontryagin dual of a Z-module M . If M is a
Z[A]-module, this is endowed with the contragredient A-action. Similarly, the R-linear dual
HomR(M,R) of an R[A]-module is given the contragredient action. If A is a finite group, then
one has the isomorphism

HomR(M,R)#
≃−→ HomR[A](M,R[A]), f 7→

{
m 7→

∑
a∈A

f(am)a−1
}
. (3)

Furthermore, for a fixed prime p (that will always be clear from context), we let Â :=
lim←−n∈N(A/p

nA) (or A∧ where notationally more convenient) denote the p-adic completion

of A. The p-primary component of A is denoted A[p∞] :=
⋃

n∈NA[p
n].

For any ring commtuative ring R, we write D(R) for the derived category of R-modules. The
right-derived functor of a functor F is denoted RF . For example, we write RHomR(−, R) and
RΓ(R,−) := RΓét(SpecR,−). Left-derived tensor products are denoted ⊗L. We will use the
determinant functor DetR(−) of Knudsen–Mumford [KM76] (see also §B.1).
Arithmetic Fix an algebraic closure Q along with an embedding ι : Q ↪→ C. For every natural
number m ∈ N := Z>0 we then set ζm := ι−1(e2πi/m). We also write Fm := Q(ζm) for the m-th
cyclotomic field, set Gm := Gal(Q(ζm)/Q), and recall that one has an isomorphism

(Z/mZ)× → Gm, a 7→ σa

with σa defined by sending ζm to ζam. For every prime number ℓ, we also write Frobℓ for a lift
of the (arithmetic) Frobenius automorphism at ℓ to Gal(Q/Q).
For every finite Galois extension K of Q we set GK := Gal(K/Q) and we say K is an ‘abelian
number field’ if GK is abelian. Given another finite Galois extension L of Q that contains K,
we then write πL/K : C[GL] → C[GK ] for the natural epimorphism induced by the restriction
map GL → GK .
Let E be an an elliptic curve E defined over Q and of conductor N = NE , which will be fixed
throughout the article. We also fix a global minimal Weierstraß equation for E and write ωE

for the corresponding Néron differential. We will often regard E as an elliptic curve over a finite
extension F of Qℓ for some prime number ℓ, and write Ê for the formal group of E (usually
with respect to ωE). The formal logarithm and formal exponential map of Ê are denoted as
log

Ê
and exp

Ê
, respectively. The reduction of E modulo the maximal ideal of F (with respect

to a Weierstraß equation that is minimal over F ) will be written as Ẽ. We also write E0(F ) and
E1(F ) for the subgroups of E(F ) comprising points that, over the residue field F of F , reduce
to a non-singular point and to the identity of Ẽ(F), respectively. We also use the semi-local
variants Ei(Kℓ) :=

⊕
v|ℓEi(Kv) for i ∈ {∅, 0, 1} if K is a number field and ℓ a prime number.

For a prime number p, assumed to be odd in this article, we denote the p-adic Tate modules
of E as

TpE := lim←−n∈NE[pn] and VpE := Qp ⊗Zp TpE.
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These are endowed with a natural action of Gal(Q/Q). Given an abelian field K, we often

also write TK/Q for the induced representation Ind
Gal(Q/K)

Gal(Q/Q)
(TpE) = (TpE)⊗Zp Zp[G] on which

Gal(Q/Q) acts by σ · (a⊗ b) := (σa)⊗ (σ−1b). Here σ is the image of σ ∈ Gal(Q/Q) in G.
We let 1S(x) denote the indicator function of a set S. If S is the set of prime numbers not
dividing an integer N , we write simply 1N (x).

2. Local points and Mazur–Tate elements

In this section we define the modular elements of Mazur and Tate, and relate them to Kato’s
Euler system. To do this, we follow the approach of Kurihara [Kur02], as further developed
by Kobayashi [Kob03; Kob06] and Otsuki [Ots09], to construct useful local points. After some
preliminaries, the main result of this section is stated as Theorem (2.10).

2.1. Modular symbols

Fix a minimal Weierstrass model of E over Z and write ωE for the corresponding Néron differ-
ential. We also fix generators γ+ and γ− of the subgroups H1(E(C),Z)+ and H1(E(C),Z)− of
H1(E(C),Z) on which complex conjugation acts by +1 and −1, respectively. Write c∞ ∈ {1, 2}
for the number of connected components of E(R), and define periods of E by setting

Ω+ = Ω+
ω,γ :=

∫
E(R)

| ωE |= c∞ ·
∫
γ+

ωE and Ω− = Ω−ω,γ := c∞

∫
γ−
ωE .

We assume γ+ and γ− are chosen in such a way that Ω+ > 0 and Ω− ∈ iR>0.

(2.1) Remark. Artin formalism suggests that the above normalisation of periods, which is
consistent with [WW22], is best suited to the study of special values of L-series. We note,
however, that our convention slightly differs from that chosen by Mazur and Tate in [MT87].
To be more precise, Mazur and Tate use the periods 1

2Ω
+ and c∞

2 Ω−. Since the difference only
concerns a possible factor of 2, this will be irrelevant to our main results.

By the modularity theorem [BCDT01] there is a normalised newform f of weight 2 associated
to the isogeny class of E, which we use to define the map

λf : Q→ C, a 7→ 2π

∫ ∞
0

f(a+ iτ)dτ.

In addition, we define maps [·]+E : Q→ R and [·]−E : Q→ R by means of

λf (a) = [a]+EΩ
+ + [a]−EΩ

− for all a ∈ Q.

(2.2) Definition. For every abelian number field K of conductor m = mK , we define the
‘Mazur–Tate element’

θMT
K := πFm/K

( ∑
a∈(Z/mZ)×

([ am ]+E + [ am ]−E)σa
)
∈ R[GK ].

If K = Fm, then we abbreviate this to θMT
m := θMT

Fm
.

(2.3) Remark. (a) The Manin–Drinfeld theorem [Man72; Dri73] implies that the modular
symbols [·]± are rational-valued, hence θMT

K belongs to Q[GK ]. In addition, the Mazur–
Tate elements have nice integrality properties which are discussed in detail in Appendix A.

(b) Write F+
m for the maximal real subfield of Fm. Then 1

2θ
MT
F+
m

coincides with the ‘modular

element’ defined by Mazur and Tate in [MT87, (1.2)]. This follows from the fact that
λ(−am ) = λ( a

m), (cf. [WW22, Lem. 5]).
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(c) Birch’s formula (see [MTT86, (8.6)]) implies that, for every primitive Dirichlet character
χ of conductor m, the Mazur–Tate element is related to L-values via the interpolation
property

χ(θMT
m ) =

G(χ) · L(E,χ−1, 1)
Ωϵ(χ)

with the (primitive) ‘Gauss sum’ G(χ) :=
∑

a∈(Z/mZ)× χ(σa)e
2πia/m ∈ C and ϵ(χ) = + if

χ is even and ϵ(χ) = − if χ is odd.

The Mazur–Tate elements satisfy the following norm relations.

(2.4) Proposition (Mazur–Tate). For every m ∈ N and prime number ℓ one has that

πmℓ/m(θMT
mℓ ) =

{
(aℓ − 1N (ℓ)σ−1ℓ − σℓ) · θ

MT
m if ℓ ∤ m,

aℓθ
MT
m − 1N (ℓ)NFm/Fm/ℓ

θMT
m/ℓ if ℓ | m.

Proof. This follows from [MTT86, (4.2)], see also [MT87, (1.3) on p. 717].

(2.5) Remark. Write D(m) := gcd(m,N). If gcd(D(m), N
D(m)) = 1, then the Mazur–Tate

elements satisfy the ‘functional equation’ (see [MT87, (1.6.2)])

θMT
m = ϵf · σ−1−Q · (θ

MT
m )#,

where Q := N/D(m) and ϵf ∈ {±1}. In this case, therefore, θMT
m and (θMT

m )# generate the
same Z[Gm]-submodule of Q[Gm]. The proof of this functional equation follows from the
corresponding result for modular symbols (see [MTT86, § 6 Prop.]), and is given, in the case
m and N are coprime in [Ota18, Prop. 5.16]. The proof for general m and N is identical.

2.2. Local Tate duality

For every finite place v of K we write E(Kv)
∧ := lim←−n∈N(E(Kv)/p

nE(Kv)) for the p-adic

completion of the group of Kv-rational points E(Kv) of E. We denote the local Kummer map
as κ(v) : E(Kv)

∧ ↪→ H1(Kv,TpE) and, for every prime number ℓ, denote its semilocal variant
as κ(ℓ) :

⊕
v|ℓE(Kv)

∧ ↪→ H1(Qℓ, TK/Q). Following Bloch and Kato [BK90], we define local
spaces

H1
f (Qℓ, TK/Q) := im(κ(ℓ)) and H1

/f (Qℓ, TK/Q) := coker(κ(ℓ)).

Recall that the Weil pairing induces a canonical isomorphism (TpE)∗(1) ∼= TpE and hence a
cup product pairing

H1(Kv,TpE)×H1(Kv,TpE) ∼= H1(Kv,TpE)×H1(Kv, (TpE)∗(1))
∪−→ H2(Kv,Zp(1)) ∼= Zp

for every p-adic place v of K. Taking the sum over all p-adic places of K then gives a pairing

H1(Qp, TK/Q)×H1(Qp, TK/Q)→
⊕

v|p
Zp

Trace−−−→ Zp. (4)

By [BK90, Prop. 3.8] the space H1
f (Qp, TK/Q) is self-orthogonal under (4) and so it induces a

pairing

(·, ·)E/K : H1
/f (Qp, TK/Q)×H1

f (Qp, TK/Q)→ Zp. (5)

In particular, every Q = (Qv)v|p in H1
f (Qp, TK/Q) =

⊕
v|p im(κ(v)) gives rise to a map

PK(·, Q) : H1(K,TpE)→ Zp[G], a 7→
∑

σ∈G
(loc

(p)
/f (σa), Q)E/Kσ

−1, (6)

where, as before, G = Gal(K/Q) and loc
(p)
/f

:= ⊕v|ploc
(v)
/f with loc

(v)
/f the composite of the

restriction map loc(v) : H1(K,TpE)→ H1(Kv,TpE) and the projection onto H1
/f (Kv,TpE).
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(2.6) Remark. Write VK/Q := TK/Q⊗ZpQp. We note that the pairing (·, ·)E/K can be linearly
extended to a pairing on H1

/f (Qp, VK/Q) × H1
f (Qp, VK/Q). As a consequence, for every Q ∈

H1
f (Qp, VK/Q) we also obtain a map H1(K,VpE)→ Qp[G] that we denote by PK(·, Q) as well.

Since the target of (6) is Zp-torsion free, it factors through the natural map H1(K,TpE) →
H1(K,VpE) and so we feel this slight abuse of notation is not unjustified.

Write

exp∗Kv
: H1

/f (Kv,VpE)
≃−→ Fil0DdR,Kv(VpE) (7)

for the ‘dual exponential map’ that is defined by Kato in [Kat93, Ch. II, § 1.2.4] and define the
composite map

exp∗ωE
:
⊕

v|p
H1

/f (Kv,VpE)
⊕v|p exp∗Kv−−−−−−−→

⊕
v|p

Fil0DdR,Kv(VpE)
≃−→ (Qp ⊗Q K)⊗Q H0(E,Ω1

E/Q)

ωE 7→1−−−−→ Qp ⊗Q K,
where the second arrow is the comparison isomorphism of p-adic Hodge theory. The following
result then records the basic properties of the pairing P(·, ·).

(2.7) Lemma. Fix Q = (Qv)v|p ∈ H1
f (Qp, TK/Q) and let a ∈ H1(OK,S ,TpE).

(a) Assume that p is unramified in K if E has additive reduction at p. Then one has

PK(a,Q) =
∑

σ∈GK

Tr(Qp⊗QK)/Qp

(
(log

Ê
(Qv))v|p · (exp∗ωE

◦ loc(p)/f )(σa)
)
σ−1. (8)

(b) For every x ∈ Zp[G] one has x · PK(a,Q) = PK(x · a,Q) = PK(a, x# ·Q).

(c) If L is a subfield of K and H := Gal(K/L), then in Zp[GL] one has

πK/L

(
PK(a,Q)

)
= PL(coresK/L(a),TrK/L(Q)).

In particular, if a is fixed by H, then PK(a,Q) = PL(a,TrK/L(Q)) ·NH in Zp[GK ].

Proof. In light of Remark (2.6), we may verify claim (a) after extending scalars to Qp. The
assumed validity of Hypothesis (1.2) (iii) moreover implies that our fixed minimal Weierstraß
equation (over Q) is still minimal over Kv for every v | p, and hence that ωE is a Néron
differential for E/Kv. Given this, the key point is then that, by [BK90, Ex. 3.11], one has the
commutative diagram

Qp ⊗Zp H
1
/f (Qp, TK/Q) Qp ⊗Q K

(Qp ⊗Zp H
1
f (Qp, TK/Q))

∗ ⊕
v|p(Qp ⊗Zp Ê(Kv))

∗ (Qp ⊗Q K)∗.

exp∗ωE

≃ ≃
≃ exp∗

Ê

Here the vertical isomorphism on the left is induced by the fact that the pairing (·, ·)E/K is
perfect after extending scalars to Qp (by [BK90, Prop. 3.8]), and the vertical isomorphism on
the right is the map Qp ⊗Q K → (Qp ⊗Q K)∗ that sends a 7→ {α 7→ Tr(Qp⊗QK)/Qp

(aα)} (and
so is induced by the trace pairing). Finally, the map exp∗

Ê
is induced by the duals of the

exponential maps exp
Ê
of the formal groups Ê of E/Kv (associated to ωE).

Now, the commutativity of the diagram implies (x, exp
Ê
(α))E/K = Tr(Qp⊗QK)/Qp

(α exp∗ωE
(x))

for all x ∈ H1
/f (Qp, VK/Q) and α ∈ Qp ⊗Q K. Claim (a) then follows upon substituting

α = log
Ê
(Q).

Claims (b) and (c), in turn, are verified by means of direct calculations (cf. [Ots09, Lem. 3.5]).

2.3. Kato’s Euler system

Recall that, for every prime number ℓ, the ‘Euler factor’ at ℓ ̸= p is defined as

Eulℓ(X) := detQp(1− Frob−1ℓ X | (VpE)Iℓ) ∈ Qp[X],
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where Iℓ ⊆ Gal(Q/Q) denotes a choice of inertia subgroup at ℓ. Explicitly, one has (see, for
example, [Kin11, Ex. 1.26])

Eulℓ(X) = 1− aℓℓ−1X + 1N (ℓ)ℓ−1X2.

For any integer n, we let Sn denote the set of prime divisors of n. We also write Sn∞ := Sn∪{∞}
and set

S(K) := SpNm∞

with m := mK the conductor of K and N := NE the conductor of E.

(2.8) Theorem (Kato). Let F denote the set of finite abelian extensions of Q. Then there
exists a collection of elements

zKato := (zKato
K )K∈F ∈

∏
K∈F

H1(OK,S(K),VpE)

with the following properties.

(a) If L,K ∈ F with K ⊆ L, then one has

CoresL/K(zKato
L ) =

(∏
ℓ∈S(L)\S(K)

Eulℓ(Frob
−1
ℓ )

)
· zKato

K ,

where CoresL/K : H1(L,VpE)→ H1(K,VpE) denotes the corestriction map.

(b) Set

yKato
K :=

(∏
ℓ∈SN\SpmK

Eulℓ(Frob
−1
ℓ )

)−1 · zKato
K .

If E[p] is irreducible as an Fp[Gal(Q/Q)]-module and E(K) contains no point of order
p, then c∞y

Kato
K (and hence also c∞z

Kato
K ) belongs to H1(OK,S(K),TpE).

(c) One has the equality

(⊕v|p exp
∗
Kv

)(zKato
K ) =

(∑
χ∈ĜK

LS(K)(E,χ
−1, 1)

Ωsgn(χ)
eχ
)
⊗ ωE

in
⊕

v|p Fil
0
dR,Kv

(VpE) ∼= Qp ⊗Q H0(E,Ω1
E/K) = (Qp ⊗Q K)⊗Q H0(E,Ω1

E/Q).

Proof. The elements zKato
K are defined by slightly modifying the elements c,dz

(p)
m (f, 1, 1, ξ, S(K))

constructed by Kato in [Kat04, (8.1.3)]. The integrality property in claim (b) is proved by the
argument of [Kat04, p. 12.6] (following Delbourgo [Del08, App. A], see also [Kat21, Thm. 6.1])
and the ‘explicit reciprocity law’ in claim (c) follows from [Kat04, Thm. 9.7 and 12.5].

(2.9) Remark. Suppose the Galois representation ρE,p : GQ → Aut(TpE) ∼= GL2(Zp) contains
SL2(Zp). Then E[p] is an irreducible Fp[GQ]-module and E(K) has no non-trivial point of order
p for all finite abelian extensions K of Q.

We now explain the link between Kato’s Euler system, as normalised in Theorem (2.8), and
the Mazur–Tate elements θMT

K .
To prepare for the statement of our result in this direction we define, for a ∈ N, an auto-
morphism σ̃a of Z[ζm] as follows. Set m2 :=

∏
ℓ|a ℓ

ordℓ(m) and m1 := m/m2 so that we have a
decomposition m = m1m2. We then take σ̃a to be the image of σa under the splitting map
Gm1 ↪→ Gm1 × Gm2

∼= Gm that sends g 7→ (g, idFm2
). In particular, σ̃a agrees with σa if a is

coprime with m, and is the identity map if m | a (more generally, if and only if m1 = 1).
The main result of this section is as follows.

(2.10) Theorem. Let m be a natural number coprime to p and fix n ∈ Z≥0. If E has additive
reduction at p, then we take n = 0. We also write τ for the p-adic Teichmüller character
(regarded as a character Gmpn → Z×p ). Then there exists

kmpn ∈ Qp ⊗Zp E1(Fmpn,p) := Qp ⊗Zp

⊕
v|p
E1(Fmpn,v)

and, for every prime number ℓ | m, an element ν
(ℓ)
mpn ∈ Zp[Gmpn ] with the following properties.
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(a) One has (∏
ℓ|m

Eulℓ(σ̃ℓ)
−1 · ν(ℓ)mpn

)# · PFmpn
(yKato

mpn , kmpn) = θMT
mpn .

(b) The element (1− eτ )kmpn belongs to (the image of) E1(Fmpn,p)+ (pEulp(σp))
−1E1(Fm,p).

If p is not a multiplicative prime and ap ̸≡ 1 mod p, then also kmpn belongs to E1(Fmpn,p).

(c) One has the following equalities in Qp ⊗Zp E1(Fmpn,p).

(i) Trmpn+1/mpn(kmpn+1) =

{
apkmpn − 1N (p)kmpn−1 if n ≥ 1,

(ap − 1N (p)σp − σ−1p )km if n = 0.

(ii) For every prime number ℓ ̸= p, one has Trℓmpn/mpn(kℓmpn) =

{
ℓkmpn if ℓ | m,
−σ−1ℓ kmpn if ℓ ∤ m.

(d) Write D(ℓ)
mpn ⊆ Gmpn for the decomposition group of ℓ. If any of the following hold:

• aℓ = 2, ℓ ∤ N and ℓ2 ∤ m,

• aℓ = 1 and ℓ | N ,

• aℓ = 0, ℓ | N and ℓ2 | m,

then ν
(ℓ)
mpn belongs to ID(ℓ)

mpn
:= ker{Zp[Gmpn ]→ Zp[Gmpn/D(ℓ)

mpn ]}. Furthermore, one has

the following congruence modulo I2
D(ℓ)

mpn

,

ν
(ℓ)
mpn ≡


0 if aℓ = 2, ℓ ∤ N and ℓ2 ∤ m,
ℓ−(ordℓ(m)−1)(1− σ̃ℓ) if aℓ = 1 and ℓ | N,
0 if aℓ = 0, ℓ | N and ℓ2 | m.

(e) Each ν
(ℓ)
mpn belongs to the ideal of Zp[Gmpn ] that is generated by Eulℓ(σ̃ℓ) and NI(ℓ)mpn

, with

I(ℓ)mpn ⊆ D
(ℓ)
mpn the inertia subgroup at ℓ.

The proof of this result is given in § 2.5.3 after a number of preparations. To end this section,
we comment on the hypothesis ap ̸≡ 1 mod p that appears in claim (b) of Theorem (2.10).

(2.11) Remark. Primes p of good reduction for which Ẽ(Fp) contains a point of order p (or,

equivalently, for which ap := p+ 1− |Ẽ(Fp)| is congruent to 1 mod p) are called ‘anomalous’
by Mazur in [Maz72]. Hasse’s bound implies that one has ap = 1 for any anomalous prime
p ≥ 7, and this combines with a result of Serre [Ser81] to show that the set of anomalous
primes is of density zero. It is not known whether an elliptic curve can have infinitely many
anomalous primes (although Mazur has conjectured this to be possible and it would follow
from conjectures of Hardy–Littlewood, see [Qin16], and Lang–Trotter [LT76]). Given any set
of prime numbers P, one can however construct an elliptic curve E/Q such that every prime
in P is anomalous for E (see [Maz72, Lem. 8.19]).
If E(Q) contains a torsion point, then the set of anomalous primes for E is either empty, consists
of a single element, or else is contained in {2, 3, 5} (see [Maz72, Lem. 8.18]). For example, if
E(Q) contains a point of prime-order ℓ ̸= p and E has good reduction at p > 5, then ap ̸≡ 1
mod p.

2.4. Otsuki’s elements

In this section we first recall important definitions and results from Otsuki’s article [Ots09],
and then further develop certain aspects of Otsuki’s theory. This will be crucial to the proof
of Theorem (2.10).
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2.4.1. Review of Otsuki theory

For every natural number a ∈ N, we will use the Q-algebra homomorphism

σ̂a : Q[X]→ Q[X], σ̂a(X) := Xa.

(2.12) Lemma ([Ots09, Prop. 1.3]). The following claims are valid for every m ∈ N and
prime number ℓ.

(a) Eulℓ(σ̂ℓ) defines an invertible Q-algebra endomorphism of Q[X]/(Xm− 1). In particular,
there is a unique well-defined element Eulℓ(σ̂ℓ)

−1 ∈ EndQ-alg(Q[X]/(Xm − 1)).

(b) If ℓ ∤ m, then Eulℓ(σ̂ℓ) defines an invertible Q-algebra endomorphism of Q[X]/(Φm) with
Φm the m-th cyclotomic polynomial. In other words, Eulℓ(σ̂ℓ)

−1 induces a well-defined
element of EndQ-alg(Q[X]/(Φm)).

Proof. To prove claim (a), it suffices to show that Eulℓ(σ̂ℓ) defines an injective endomorphism of
the finite-dimensional Q-vector space Q[X]/(Xm− 1) and this is verified in [Ots09, Prop. 1.3].
As for claim (b), it follows from the fact that σ̂ℓ preserves the ideal (Φm) if ℓ ∤ m that Eulℓ(σ̂ℓ)
does the same. Since we know Eulℓ(σ̂ℓ) to be injective by claim (a), this shows that Eulℓ(σ̂ℓ)
restricts to an automorphism of the Q-subvector space (Φm)/(Xm − 1) of Q[X]/(Xm − 1). As
a consequence, Eulℓ(σ̂ℓ)

−1 preserves (Φm)/(Xm− 1). This shows that Eulℓ(σ̂ℓ) and Eulℓ(σ̂ℓ)
−1

both descend to elements of EndQ-alg(Q[X]/(Φm)), as required to prove claim (b).

The endomorphism Eulℓ(σ̂ℓ)
−1 introduced above is rather inexplicit but does satisfy a certain

inductive relation that will be useful in computations. To state this relation, we shall use
certain constructions, themselves based on [Kur02, § 2.2], that are made by Otsuki in [Ots09]
and which we now recall. For a prime divisor ℓ of m and integer i ∈ Z≥0 we inductively define

elements c
(ℓ)
i ∈ Z[1/ℓ] as follows. Set c

(ℓ)
0 := 0, c

(ℓ)
1 := 1 and, for i ≥ 2,

c
(ℓ)
i+1 :=

aℓ
ℓ
c
(ℓ)
i −

1N (ℓ)

ℓ
c
(ℓ)
i−1. (9)

For i ∈ Z≥0 we also define a polynomial F̃
(i)
ℓ (X) ∈ Z[1/ℓ][X] by

F̃
(i)
ℓ (X) := c

(ℓ)
i+1 −

1N (ℓ)

ℓ
c
(ℓ)
i X.

By induction on j ∈ N, one then proves the key relation

Eulℓ(σ̂ℓ)
−1 =

j−1∑
i=0

c
(l)
i+1σ̂

i
ℓ + F̃

(j)
ℓ (σ̂ℓ)Eulℓ(σ̂ℓ)

−1σ̂jℓ , (10)

(see [Ots09, Lem. 2.6] for details).

2.4.2. The definition of Otsuki’s elements

In this section we discuss the canonical local elements defined by Otsuki in [Ots09, Def. 2.4].

(2.13) Definition. For every natural number m, we define

xm :=
((∏

ℓ|mp
Eulℓ(σ̂ℓ)

−1)(X)
)
(ζm) ∈ Fm.

(2.14) Remark. Our definition of xm differs slightly from that of Otsuki in [Ots09]. To be
precise, if we write xOtsuki

m for the element denoted as x′m in [Ots09, Def. 2.4], then

xm =

{
xOtsuki
m if p | m,

Eulp(σp)
−1xOtsuki

m if p ∤ m.
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In the remainder of this section, we will make the element xm more explicit. To do this,
it is convenient to introduce some further notation. For every prime number ℓ and integers

0 ≤ j ≤ n, we set e(ℓ)n,0 := ℓ−(n−1)NFℓn/Q and e
(ℓ)
n,j := ℓ−(n−j)NFℓn/Fℓj

. If m′ ∈ N is coprime with
ℓ, then one has

ζm′ℓj = ω
(ℓ)
n,j ·

n∑
i=0

ζm′ℓi with ω
(ℓ)
n,j :=


(e

(ℓ)
n,j − e

(ℓ)
n,j−1) if j ≥ 2,

e
(ℓ)
n,1 if j = 1,

−σ̃ℓe
(ℓ)
n,0 if j = 0.

(11)

Here ω
(ℓ)
n,j is considered to be an element of Zp[Gm′ℓn ] via the splitting Gm′ℓn

∼= Gm′ × Gℓn

induced by the relevant restriction maps. We may then define an element of Z[1/ℓ][Gℓn ][X] by

λ(ℓ)n (X) := Eulℓ(X)
( n−1∑

i=0

c
(l)
i+1ω

(ℓ)
n,n−i

)
− F̃ (n)

ℓ (X)Xe
(ℓ)
n,0.

(2.15) Lemma. For every prime number ℓ ̸= p and natural number n the polynomial λ
(ℓ)
n (X)

has the property that, for every m′ ∈ N with ℓ ∤ m′, one has the following equality in Fℓnm′.(
Eulℓ(σ̂ℓ)

−1(X)
)
(ζm′ℓn) = Eulℓ(σ̃ℓ)

−1 · λ(ℓ)n (σ̃ℓ) ·
n∑

i=0

ζm′ℓi .

Proof. We first make the useful observation that one has(
(F̃

(n)
ℓ (σ̂ℓ)Eulℓ(σ̂ℓ)

−1σ̂nℓ )(X)
)
(ζm′ℓn) = F̃

(n)
ℓ (σℓ)Eulℓ(σℓ)

−1 · ζm′ . (12)

To justify this, we note that σ̂nℓ (X) = Xℓn belongs to the image of the map Q[X]/(Xm′−1)→
Q[X]/(Xℓnm′ − 1) that is defined by sending X 7→ Xℓn . From the commutative diagram

Q[X]/(Xm′ − 1) Q[X]/(Xℓnm′ − 1)

Q[ζm′ ] Q[ζℓnm′ ]

X 7→Xℓn

X 7→ζm′ X 7→ζℓnm′

ζm′ 7→ζm′

we therefore see that is suffices to compute (F̃
(n)
ℓ (σ̂ℓ)Eulℓ(σ̂ℓ)

−1)(X) evaluated at X = ζm′ . By

Lemma (2.12) (b) the endomorphism Eulℓ(σ̂ℓ)
−1 of Q[X]/(Xm′ − 1) descends to Q[X]/(Φm′)

(and corresponds with multiplication by Eulℓ(σℓ)
−1 under the isomorphism Q[X]/(Φm′) ∼=

Q[ζm′ ] that sends X 7→ ζm′), so this computation can be done in Q[ζm′ ] and leads to the
claimed equality (12).
Now, (12) combines with the relation (10) to imply that one has(

Eulℓ(σ̂ℓ)
−1(X)

)
(ζm′ℓn) =

( n−1∑
i=0

c
(l)
i+1σ̂

i
ℓ(X) + (F̃

(n)
ℓ (σ̂ℓ)Eulℓ(σ̂ℓ)

−1σ̂nℓ )(X)
)
(ζm′ℓn)

=
( n−1∑
i=0

c
(l)
i+1ζm′ℓn−i

)
+
(
F̃

(n)
ℓ (σ̃ℓ)Eulℓ(σ̃ℓ)

−1ζm′
)

=
( n−1∑
i=0

c
(l)
i+1ω

(ℓ)
n,n−i + F̃

(n)
ℓ (σ̃ℓ)Eulℓ(σ̃ℓ)

−1ω
(ℓ)
n,0

)
·

n∑
i=0

ζm′ℓi

= Eulℓ(σ̃ℓ)
−1 · λ(ℓ)n (σ̃ℓ) ·

n∑
i=0

ζm′ℓi ,

as claimed.

For every natural number m ∈ N and prime divisor ℓ ̸= p of m, we define

ν(ℓ)m := λ
(l)
ordℓ(m)(σ̃ℓ) ∈ Zp[Gm].
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The following result, in which we write m0 :=
∏

ℓ|m ℓ for the ‘squarefree radical’ of an integer

m, describes the contribution to the definition of xm of the factors Eulℓ(σ̂ℓ)
−1 for ℓ ̸= p in

terms of the elements ν
(ℓ)
m .

(2.16) Proposition. Let m be a natural number coprime to p. For every integer n ≥ 0 one
has

xmpn =
(∏
ℓ|m

Eulℓ(σ̃ℓ)
−1 · ν(ℓ)mpn

)
·

∑
m0|d|m

(Eulp(σ̂p)
−1(X))(ζdpn).

Proof. Factorise m as
∏s

i=1 ℓ
ni
i and set ℓs+1 := p and ns+1 := n so that mpn =

∏s+1
i=1 ℓ

ni
i . We

shall prove by induction on 0 ≤ j ≤ s that one has

xmpn =
( j∏
i=1

Eulℓi(σ̃ℓi)
−1 · ν(ℓi)mpn

)
·
( ∑

mj,0|d|mj

( s+1∏
i=j+1

Eulℓi(σ̂ℓi)
−1)(X)

)
(ζdmpn/mj

) (13)

with mj :=
∏j

i=1 ℓ
ni
i . Taking j = s, this then implies claim (a). If j = 0, the claim follows

directly from the definition of xmpn . For the inductive step we assume that j > 0 and that
(13) is valid for j − 1. We introduce the notation

c̃(ℓi)q :=

{
c
(ℓi)
q if 0 ≤ q ≤ ni − 1,

F̃
(ni)
ℓ (σ̂ℓ)Eulℓ(σ̂ℓ)

−1 if q = ni,

so that the relation (10) can be compactly written as

Eulℓi(σ̂ℓi)
−1 =

ni∑
q=0

c̃
(ℓi)
q+1σ̂

q
ℓi
.

Define A (j) :=
∏s+1

i=j+1{0, . . . , ni} and, for every a = (aj+1, . . . , as) ∈ A (j), write |a| :=∏s+1
i=j+1 ai. Then we have

( s+1∏
i=j

Eulℓi(σ̂ℓi)
−1)(X) =

(
Eulℓj (σ̂ℓj )

−1 ·
s+1∏

i=j+1

( ni∑
q=0

c̃
(ℓi)
q+1σ̂

q
ℓi

))
(X)

=
∑

a∈A (j)

(

s+1∏
i=j+1

c̃(ℓi)ai ) · Eulℓj (σ̂ℓj )
−1(X |a|). (14)

Fix a divisor d′ of mj−1 and define d′j := d′mpn/mj−1. If we set

C(ℓi)
q :=

{
c
(ℓi)
q if 0 ≤ q ≤ ni − 1,

F̃
(ni)
ℓ (σℓ)Eulℓ(σℓ)

−1 if q = ni,

then (14) combines with (12) to imply that( s+1∏
i=j

Eulℓi(σ̂ℓi)
−1)(X)(ζd′j ) =

∑
a∈A (j)

(

s+1∏
i=j+1

C(ℓi)
ai ) ·

(
Eulℓj (σ̂ℓj )

−1(X)
)
(ζd′j/|a|).

Let d be a divisor of mj and set dj := dmpn/mj , then the same computation also shows that
one has ( s+1∏

i=j+1

Eulℓi(σ̂ℓi)
−1)(X)(ζdj ) =

∑
a∈A (j)

(
s+1∏

i=j+1

C(ℓi)
ai ) · ζdj/|a|. (15)

Next we recall that Lemma (2.15) proves an equality

(
Eulℓj (σ̂ℓj )

−1(X)
)
(ζd′j/|a|) = Eulℓj (σ̃ℓj )

−1 · λnj (σ̃ℓ) ·
nj−1∑
q=0

ζd′j/(ℓq |a|). (16)
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Now, everymj,0 | d | mj is of the form d′ℓnj−q for somemj−1,0 | d′ | mj−1 and q ∈ {0, . . . , nj−1}
so that dj is of the form d′j/ℓ

q. As a consequence, we may calculate that∑
mj−1,0|d′|mj−1

( s+1∏
i=j

Eulℓi(σ̂ℓi)
−1)(X)(ζd′j )

(14)
=

∑
mj−1,0|d′|mj−1

∑
a∈A (j)

(
s+1∏

i=j+1

c̃(ℓi)ai ) ·
(
Eulℓj (σ̂ℓj )

−1(X)
)
(ζd′j/|a|)

(2.15)
=

∑
mj−1,0|d′|mj−1

∑
a∈A (j)

(
s+1∏

i=j+1

C(ℓi)
ai ) ·

(
Eulℓj (σ̃ℓj )

−1 · λ(ℓj)nj (σ̃ℓ) ·
nj−1∑
q=0

ζd′j/(ℓq |a|)
)

(16)
= Eulℓj (σ̃ℓj )

−1 · λ(ℓj)nj (σ̃ℓ) ·
∑

mj,0|d|mj

∑
a∈A (j)

(
s+1∏

i=j+1

C(ℓi)
ai ) · ζdj/|a|

(15)
= Eulℓj (σ̃ℓj )

−1 · λ(ℓj)nj (σ̃ℓ) ·
( ∑

mj,0|d|mj

( s+1∏
i=j+1

Eulℓi(σ̂ℓi)
−1)(X)

)
(ζdj ).

By the induction hypothesis, this shows the claimed equality (13) and therefore concludes the
proof of the proposition.

2.4.3. Congruences modulo augmentation ideals

In this section we investigate when the elements ν
(ℓ)
mpn belong to a relevant augmentation ideal

and also compute its class modulo the square of the augmentation ideal. In particular, the
second part of Theorem (2.10) (d) will be a consequence of these calculations.
We recall that we have fixed an odd prime p, which will be important in the proof of the
following result.

(2.17) Proposition. Let m > 1 be a natural number, let ℓ ̸= p be a prime number, and set
n := ordℓ(m). Then the following claims are valid.

(a) Write D(ℓ)
m ⊆ Gm for the decomposition group of ℓ. The element ν

(ℓ)
m belongs to ID(ℓ)

m
:=

ker{Zp[Gm]→ Zp[Gm/D(ℓ)
m ]} if any of the following hold:

• aℓ = 2, ℓ ∤ N and ℓ2 ∤ m,

• aℓ = 1 and ℓ | N ,

• aℓ = 0, ℓ | N and ℓ2 | m.

(b) One has ν
(ℓ)
m ≡ c(ℓ)n (1− aℓσ̃ℓ) + 1N (ℓ)

ℓ (ℓc
(ℓ)
n σ̃2ℓ + c

(ℓ)
n−1σ̃ℓ(ℓ− 1)) (mod I2

D
(ℓ)
m

).

Proof. It is convenient to set m′ := mℓ−n in this proof. To prove claim (a), we first note that,

since ℓ is totally ramified in Fm′ℓn/Fm′ℓj , one has that Gal(Fm′ℓn/Fm′ℓj ) is contained in D(ℓ)
m

for every j ∈ {0, . . . , n}. As a consequence, we have

e
(ℓ)
n,j ≡ 1 mod ID(ℓ)

m
if j ∈ {1, . . . , n}. (17)

In particular, e
(ℓ)
n,n−i − e

(ℓ)
n,n−i−1 belongs to ID(ℓ)

m
for i ∈ {0, . . . , n− 2}, and therefore

ν(ℓ)m = λ(ℓ)n (σ̃ℓ) ≡ Eulℓ(σ̃ℓ)c
(ℓ)
n e

(ℓ)
n,1 − F̃

(n)
ℓ (σ̃ℓ)σ̃ℓe

(ℓ)
n,0 (mod ID(ℓ)

m
)

(17)
≡ Eulℓ(σ̃ℓ)c

(ℓ)
n − F̃

(n)
ℓ (σ̃ℓ)(ℓ− 1) (mod ID(ℓ)

m
). (18)

For ease of notation we write λ
(ℓ)
m′,i for the quantity on the right hand side of (18) with n

replaced by i. Note that, if i = n, then (18) gives that λ
(ℓ)
n (σ̃ℓ) ≡ λ

(ℓ)
m′,n (mod ID(ℓ)

m
). We work
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inductively on i and begin by considering λ
(ℓ)
m′,1. Since, c

(ℓ)
0 := 0 and c

(ℓ)
1 := 1 we can calculate

λ
(ℓ)
m′,1 = Eulℓ(σ̃ℓ)− (

aℓ
ℓ
− 1N (ℓ)

ℓ
σ̃ℓ)(ℓ− 1)

=
1

ℓ
(ℓ− aℓσ̃ℓ + 1N (ℓ)σ̃2ℓ )− (

aℓ
ℓ
− 1N (ℓ)

ℓ
σ̃ℓ)(ℓ− 1)

≡ 1

ℓ
(ℓ− aℓ + 1N (ℓ))− (

aℓ
ℓ
− 1N (ℓ)

ℓ
)(ℓ− 1) (mod ID(ℓ)

m
)

≡ 1− aℓ + 1N (ℓ) (mod ID(ℓ)
m
).

It follows that λ
(ℓ)
m′,1 ∈ ID(ℓ)

m
if either of the following hold:

• aℓ = 2, ℓ ∤ N ,

• aℓ = 1 and ℓ | N .

If n = 1 then λ
(ℓ)
1 (σ̃ℓ) ≡ λ

(ℓ)
m′,1 (mod ID(ℓ)

m
), therefore the first two points in claim (a) hold in

this case. We now consider λ
(ℓ)
m′,2. Using (9) we calculate

λ
(ℓ)
m′,2 = Eulℓ(σ̃ℓ)

aℓ
ℓ
− (

aℓ
ℓ

aℓ
ℓ
− 1N (ℓ)

ℓ
− 1N (ℓ)

ℓ

aℓ
ℓ
σ̃ℓ)(ℓ− 1) =

aℓ
ℓ
λ
(ℓ)
m′,1 +

1N (ℓ)

ℓ
(ℓ− 1). (19)

Therefore, if either

• λ
(ℓ)
m′,1 ∈ ID(ℓ)

m
and ℓ | N , or

• aℓ = 0 and ℓ | N .

Then λ
(ℓ)
m′,2 ∈ ID(ℓ)

m
. By the calculations done for λ

(ℓ)
m′,1 we have that claim (a) holds if n ∈ {1, 2}.

Suppose n ≥ 3 and let i = 3, . . . , n. By applying (9) to λ
(ℓ)
m′,i one calculates

λ
(ℓ)
m′,i =

aℓ
ℓ
λ
(ℓ)
m′,i−1 −

1N (ℓ)

ℓ
λ
(ℓ)
m′,i−2.

As with λ
(ℓ)
m′,2, we observe that if either

• λ
(ℓ)
m′,i−1 ∈ ID(ℓ)

m
and ℓ | N , or

• aℓ = 0 and ℓ | N ,

then λ
(ℓ)
m′,i ∈ ID(ℓ)

m
. Considering this argument inductively completes the proof of (a).

To prove claim (b), let j ∈ {1, . . . , n} and calculate

e
(ℓ)
n,j =

1

ℓn−j
NFℓn/Fℓj

=
1

ℓn−j
(
ℓn−j +

∑
σ∈Gal(Fℓn/Fℓj

)
(σ − 1)

)
. (20)

Under the isomorphism ID(ℓ)
m
/I2
D(ℓ)

m

∼= D(ℓ)
m ⊗ Zp induced by σ − 1 7→ σ, the sum in (20) is

mapped to
∏

σ∈Gal(Fℓn/Fℓj
) σ. If σ has odd order, then σ ̸= σ−1 and so both (element and its

inverse) appear in the above product. It follows that only the (unique) element of order 2 does

not cancel. Since p is odd, this element is trivial in D(ℓ)
m ⊗Zp. Therefore,

e
(ℓ)
n,j ≡ 1 (mod I2

D(ℓ)
m
).

Similarly, we have σ̃ℓe
(ℓ)
n,0 ≡ σ̃ℓ(ℓ− 1) (mod I2

D(ℓ)
m

). It therefore follows from the definition that

ν(ℓ)m = λ(ℓ)n (σ̃ℓ) ≡ Eulℓ(σ̃ℓ)c
(ℓ)
n − F̃

(n)
ℓ (σ̃ℓ)σ̃ℓ(ℓ− 1) (mod I2

D(ℓ)
m
)

≡ 1

ℓ
(ℓ− aℓσ̃ℓ + 1N (ℓ)σ̃2ℓ )c

(ℓ)
n − (c

(ℓ)
n+1 −

1N (ℓ)

ℓ
c(ℓ)n σ̃ℓ)σ̃ℓ(ℓ− 1) (mod I2

D(ℓ)
m
)

The result follows from rearranging and the fact that c
(ℓ)
n+1 =

aℓ
ℓ c

(ℓ)
n − 1N (ℓ)

ℓ c
(ℓ)
n−1.
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2.4.4. Norm relations

We end this section by proving two norm relations for the elements ν
(ℓ)
mpn which are required to

establish the claimed congruence of Mazur–Tate elements in Theorem (1.7).
For natural numbers a, b ∈ N with a | b we denote by πb/a : Zp[Gb]→ Zp[Ga] the natural map
induced by the restriction map Gb → Ga.

(2.18) Lemma. Let m > 1 be a natural number and let ℓ ̸= p be a prime divisor of m. If
d ∈ N is a divisor of m with ordℓ(m) = ordℓ(d), then one has

πm/d(ν
(ℓ)
m ) = ν

(ℓ)
d .

Proof. We set n := ordℓ(m) and m′ := mℓ−n so that m = m′ℓn. For clarity, let us write σ̃
(m)
ℓ

for the element previously denoted σ̃ℓ if it is regarded as an element of Gm. That is, σ̃
(m)
ℓ is

the image of (σℓ, id) under the isomorphism Gm′ × Gℓn
∼= Gm. Similarly, the element σ̃

(d)
ℓ is

the image of (σℓ, id) under Gd′ ×Gℓ
∼= Gd with d′ := dℓ−n. The commutative diagram

Gm′ Gm′ ×Gℓn Gm

Gd′ Gd′ ×Gℓn Gd,

πm′/d′

∼=

πm/d

∼=

then shows that we have πm/d(σ̃
(m)
ℓ ) = σ̃

(d)
ℓ . Using this, we may compute that

πm/d(ν
(ℓ)
m ) = πm/d(λ

(ℓ)
n (σ̃

(m)
ℓ )) = λ(ℓ)n (πm/d(σ̃

(m)
ℓ )) = λ(ℓ)n (σ̃

(d)
ℓ ) = ν

(ℓ)
d ,

as claimed.

2.5. A construction of local points

In this section we use the theory of formal groups to construct certain local points, and this
will allow us to prove Theorem (2.10) in § 2.5.3.

2.5.1. Review of Honda theory

For the convenience of the reader, we review relevant aspects of Honda’s article [Hon70] (see
also [Kob03, § 8.1]).
Suppose Q is a finite extension of Qp with ring of integers R, maximal idealM = (π), and an
automorphism ϕ : Q → Q that satisfies ϕ(a) ≡ ap modM for every a ∈ R. We then define
the ‘Frobenius operator’

ϕ̂ : QJXK→ QJXK,
∞∑
i=0

βiX
i 7→

∞∑
i=0

ϕ(βi)X
ip.

Given f, g ∈ QJXK and an ideal a of RJXK, we write f ≡ g mod a if f − g ∈ a.

(2.19) Lemma. Suppose f =
∑∞

i=0 βiX
i is a power series in QJXK with the property that

iβi ∈ R for every i ≥ 0, and that the power series g :=
∑∞

i=0 ϕ(βi)((X + 1)ip − 1) exists in
QJXK. Then one has

ϕ̂(f) ≡ g mod πRJXK.

Proof. This follows from the congruence i−1(X + πY )i ≡ i−1Xi mod π in [Hon70, Lem. 2.1].

(2.20) Definition. Let u ∈ R[X] be a polynomial with u(0) = π. A power series f =∑∞
i=0 βiX

i in QJXK is of ‘Honda type u’ if β0 = 0, β1 = 1, and

(u(ϕ̂))(f) ≡ 0 mod πRJXK.
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(2.21) Theorem (Honda). The following claims are valid.

(a) Suppose f ∈ QJXK is a power series of type u ∈ R[X]. Then there exists a one-
dimensional commutative formal group F over R such that logF = f .

(b) Suppose that F and G are two one-dimensional commutative formal groups such that
logF and logG have the same type. Then expG ◦ logF belongs to RJXK and defines an

isomorphism F ≃→ G over R.

Proof. Claim (a) is proved in [Hon70, Thm. 2]. To prove claim (b), we note that F(X,Y ) =
expF (logF (X) + logF (Y )) and G(X,Y ) = expG(logG(X) + logG(Y )) by [Hon70, Thm. 1]. If
these have the same type, then they are isomorphic over R by [Hon70, Thm. 2]. By [Hon70,
Prop. 1.6] the latter holds if and only if expG ◦ logF belongs to RJXK, as required to prove
claim (b).

We conclude our review of Honda theory with the following result.

(2.22) Proposition. Let Ê denote the formal group of the minimal model (over Zp) of an
elliptic curve E defined over Q. Then log

Ê
is of Honda type p− apX + 1N (p)X2.

Proof. This is proved in [Hon70, Thm. 9, (6.6)] in the case of good reduction and in [Hon68,
Thm. 5] for the case of bad reduction.

2.5.2. An ‘Artin–Hasse type’ exponential

In this section we will apply the results from Honda theory reviewed in the last section to a
certain explicit power series. To define this power series, we fix m ∈ N with p ∤ m and also
let q denote an auxiliary prime number coprime to m(p − 1)p. Take Q to be the unramified
extension of Qp obtained as the completion of Fmq at a p-adic place, ϕ := σp its Frobenius
automorphism, and write (p) ⊆ R for the maximal ideal and ring of integers of Q, respectively.
Fix an embedding Q ↪→ Qp that allows to view ζa, for every a ∈ N, as an element of Qp. In
the following, we define, for an element δ ∈ Zp, the power series

(1 +X)δ := exp(δ log(1 +X)) =
∞∑
i=0

(
δ

i

)
Xi

with
(
δ
i

)
:= i!−1

∏i−1
j=0(δ − i) ∈ Zp.

Given F =
∑∞

i=0 βiX
i ∈ QJXK and σ ∈ Gal(Q/Qp), we also write σ(F ) :=

∑∞
i=0 σ(βi)X

i.

(2.23) Proposition. Write τ : (Z/pZ)× ↪→ Z×p for the p-adic Teichmüller character. For
every m0 | d | m (viewed as an element of Z×p ) and Dirichlet character χ : (Z/pZ)× → Z×p with
χ ̸= τ , we define

gχ,d(X) := log
Ê
(X) + (p− 1)−1

∞∑
i=0

c
(p)
i+1ζ

pi

d

p−1∑
j=1

χ−1(j)((X + 1)d
−1τ(j)pi − 1). (21)

Then the following claims are valid.

(a) gχ,d(X) is a well-defined element of QJXK and of Honda type p− apX + 1N (p)X2.

(b) (σ−np gχ,d)(X) converges at X = ζpn − 1 for every n ∈ N, and one has

(σ−np gχ,d)(ζpn − 1) = log
Ê
(ζpn − 1) + eχ ·

n−1∑
i=0

c
(p)
i+1σ

i−n
p (ζd)(ζ

d−1pi

pn − 1)

with the usual idempotent eχ := (p− 1)−1
∑p−1

a=1 χ(a)
−1σa.

(c) Set hχ,d := exp
Ê
◦gχ,d. Then hχ,d is a well-defined element of RJXK, the power series

(σ−np gχ,d)(X) converges in ζpn − 1, and one has

log
Ê
((σ−np hχ,d)(ζpn − 1)) = (σ−np gχ,d)(ζpn − 1).
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Proof. To prove the first part of claim (a), we note that when expanding out the expression∑∞
i=0 c

(p)
i+1ζ

pi

d

∑p−1
j=1 χ

−1(j)((X+1)d
−1τ(j)pi−1), one obtains a power series of the form

∑∞
l=0 βlX

l

where βl =
∑∞

i=0 c
(p)
i+1ζ

pi

d

∑p−1
j=1 χ(j)

−1(pid−1τ(j)
l

)
. Now,

p−1∑
j=1

χ(j)

(
pid−1τ(j)

l

)
=

1

l!

p−1∑
j=1

χ−1(j)
l−1∏
α=0

(pid−1τ(j)− α)

=
1

l!

p−1∑
j=1

χ−1(j)

l∑
a=1

Ba(p
id−1τ(j))a. (22)

with suitable integers Ba ∈ Z. Since τ ̸= χ, we have
∑p−1

j=1 χ(j)
−1τ(j) = 0 and so the p-adic

valuation of (22) is at least 2i− l. Here we are using Legendre’s formula to observe the bound

ordp(l!) ≤ l. This then combines with the observations that ordp(c
(p)
i+1) ≥ −i and ordp(ζ

pi

d ) = 0
to imply that βl is a sum of terms that have p-adic valuation at least i−l , and hence converges.
To show that gχ,d(X) is of type p − apX + 1N (p)X2 we begin by noting that it is immediate
from the definition of gχ,d(X) that its constant term is log

Ê
(0)+β0 = 0. Similarly, we see that

g′χ,d(0) = 1 because β1 =
∑

i≥0 c
(p)
i+1ζ

pi

d p
id−1

∑p−1
j=1 χ

−1(j)τ(j) = 0.

We next verify that (p−apϕ̂+1N (p)ϕ̂2)gχ,d(X) belongs to pRJXK. In light of Proposition (2.22),

we need only verify that (p− apϕ̂+ 1N (p)ϕ̂2)
∑∞

l=0 βlX
l belongs to pRJXK.

Let us consider the p-order of the binomial expression in the definition of βl. We have(
pid−1τ(j)

l

)
=

1

l!
(pid−1τ(j))

l−1∏
a=1

(pid−1τ(j)− a).

Write l− 1 in its p-adic expansion, l− 1 = xnp
n + · · ·+ x1p+ x0, i.e. xi ∈ {0, 1, . . . , p− 1} and

xn ̸= 0. We then note the following equality of sets, for γ ∈ {1, . . . , xn},

{pid−1τ(j)− a (mod pn) | (γ − 1)pn + 1 ≤ a ≤ γpn}
= {a (mod pn) | (γ − 1)pn + 1 ≤ a ≤ γpn}.

Therefore,

ordp

(∏xnpn

a=1 (pid−1τ(j)− a)
(xnpn)!

)
≥ 0. (23)

Similarly, we have for γ = 1, . . . , xn−1,

{pid−1τ(j)− a (mod pn−1) | pn + (γ − 1)pn−1 + 1 ≤ a ≤ pn + γpn−1}
= {a (mod pn−1) | pn + (γ − 1)pn−1 + 1 ≤ a ≤ pn + γpn−1}.

We note that for any a in the range used in the set above the highest power of p that can divide
it is pn−1. Combining this calculation with (23) we have

ordp

(∏xnpn+xn−1pn−1

a=1 (pid−1τ(j)− a)
(xnpn + xn−1pn−1)!

)
≥ 0.

Repeating this process one observes that

ordp

(∏l
a=1(p

id−1τ(j)− a)
(l − 1)!

)
≥ 0.

In particular, ordp(
(pid−1τ(j)

l

)
) ≥ i − ordp(l). Therefore, by the observations made above we

have lc
(p)
i+1

(pid−1τ(j)
l

)
∈ Zp. Thus, we can deduce from Lemma (2.19) that

ϕ̂
(
c
(p)
i+1((X + 1)d

−1τ(j)pi − 1)
)
= c

(p)
i+1((X

p + 1)d
−1τ(j)pi − 1)

≡ c(p)i+1((X + 1)d
−1τ(j)pi+1 − 1) mod pZpJXK
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for every i ≥ 0 and j ∈ (Z/pZ)×. For the first equality we note that ϕ acts trivially on

c
(p)
i+1

(pid−1τ(j)
l

)
∈ Qp. We may therefore use the relation pc

(p)
i+1 − apc

(p)
i + 1N (p)c

(p)
i−1 = 0 to

calculate that

(p− apϕ̂+ 1N (p)ϕ̂2)
∞∑
i=0

c
(p)
i+1ζ

pi

d ((X + 1)d
−1τ(j)pi − 1)

≡
∞∑
i=0

c
(p)
i+1

(
pζp

i

d ((X + 1)d
−1τ(j)pi − 1)− apζp

i+1

d ((X + 1)d
−1τ(j)pi+1 − 1)

+ 1N (p)ζp
i+2

d ((X + 1)d
−1τ(j)pi+2 − 1)

)
mod pZpJXK

= pζpdc
(p)
1 X +

∞∑
i=1

ζp
i

d

(
pc

(p)
i+1 − apc

(p)
i + 1N (p)c

(p)
i−1

)
(X + 1)d

−1τ(j)pi − 1)

= pζpdX.

This implies the congruence required to establish that gχ,d(X) is of the claimed Honda type.
As for claim (b), it follows immediately from the calculations made in the proof of (a) that
lβl ∈ R for all l ≥ 0. Given this, it follows from [Sil09, Ch. IV, Lem. 6.3 (a)] that (σ−np gχ,d)(X)
converges when evaluated at ζpn−1 and we may compute (σ−np gχ,d)(ζpn−1) by evaluating (21)
after applying σ−np (cf. [Kat21, Lem. 3.17]).
Since gχ,d(X) and log

Ê
(X) have the same Honda type (by claim (a) and Proposition (2.22)),

it follows from Theorem (2.21) that hχ,d belongs to RJXK and, in particular, converges when
evaluated at ζpn−1. To prove the remaining part of claim (c), we note that we have the formal
identity (log

Ê
◦ exp

Ê
)(X) = X, which implies that (log

Ê
◦hχ,d)(X) = gχ,d(X) as power series.

Since log
Ê
has coefficients in Qp, this also implies that (log

Ê
◦σ−np (hχ,d))(X) = σ−np (gχ,d)(X).

The latter equality still holds true when evaluated at ζpn−1 because the coefficients of σ−np (hχ,d)
are in R (see, for example, [Rob00, § 6.1.5]).

(2.24) Remark. The purpose of the sum
∑p−1

j=1 in (21) is to avoid delicate convergence issues,
and this extends an idea of Kobayashi. That is, our definition of gχ,d is directly inspired by a
definition of Kobayashi in [Kob06, § 2] that can be seen as a special case of (21) for χ = 1.

We can now define useful local points by appropriately evaluating the power series hχ,d defined
in Proposition (2.23).

(2.25) Definition. Take ϵd to be a preimage of ζdp under log
Ê
: Ê(pR) ≃→ Ga(pR). We define

an element of Qp ⊗Zp Ê(MQ(ζpn )) as

x̃mpn :=
∑

m0|d|m

(∑
χ̸=τ

(
σ−np (hχ,d)(ζpn − 1)−

Ê
(ζpn − 1)

)
+

Ê
(pEulp(σp))

−1σ−np (ϵd)
)
,

where the sum ranges over all characters χ : (Z/pZ)× → Z×p that are not equal to the Teichmüller
character τ andMQ(ζpn ) is the maximal ideal of Q(ζpn).

The following result establishes the connection of these local points with Otsuki’s elements
from Definition (2.13).

(2.26) Lemma. In Qp(ζmpn), one has the equality

log
Ê
(x̃mpn) = (1− eτ ) ·

∑
m0|d|m

(
Eulp(σ̂p)

−1(X)
)
(ζdpn).

Proof. At the outset we recall that the idempotent 1 − eτ acts as the identity on Q. Using
Proposition (2.23) and Otsuki’s relation (10) (for the equalities (∗)), we may then calculate
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that

log
Ê
(x̃mpn) =

∑
m0|d|m

(∑
χ̸=τ

(
σ−np (gχ,d)(ζpn − 1)− log

Ê
(ζpn − 1)

)
+ (pEulp(σp))

−1pσ−np (ζd)
)

(∗)
=

∑
m0|d|m

(
(1− eτ )

n−1∑
i=0

ci+1σ
i−n
p (ζd)(ζ

d−1pi

pn − 1)

+
( n−1∑
i=0

ci+1σ
i
p + F̃ (n)

p (σp) · Eulp(σp)−1
)
σ−np (ζd)

)
=

∑
m0|d|m

(
(1− eτ )

( n−1∑
i=0

ci+1σ
i−n
p (ζd)ζ

d−1pi

pn + F̃ (n)
p (σp) · Eulp(σp)−1 · σ−1p (ζd)

))
= (1− eτ ) ·

∑
m0|d|m

(( n−1∑
i=0

ci+1σ̂
i
p + F̃ (n)

p (σp) · Eulp(σp)−1σ̂np
)
(X)

)
(σ−np (ζd)ζ

d−1

pn )

(∗)
= (1− eτ ) ·

∑
m0|d|m

(
Eulp(σ̂p)

−1(X)
)
(ζdpn),

where the last equality uses that σ−np (ζd)ζ
d−1

pn = ζdpn .

2.5.3. An explicit reciprocity law and the proof of Theorem (2.10)

We require the following modification of Kato’s explicit reciprocity law (as stated in The-
orem (2.8) (c)).

(2.27) Proposition (Otsuki). For every m ∈ N coprime to p and n ∈ Z≥0 one has∑
σ∈G

Tr(Qp⊗QFmpn )/Qp
(σ(xmpn) · (exp∗ωE

◦loc(p)/f )(y
Kato
mpn ))σ = θMT

mpn .

Proof. This is proved in [Ots09, Thm. 3.6]. Note that p is assumed to be a prime of good
reduction for E in loc. cit. but this assumption is not needed for the proof of [Ots09, Thm. 3.6].
Furthermore, the difference between xm and xOtsuki

m noted in Remark (2.14) is taken into
account by our definition of yKato

m (which differs from the element used by Otsuki in [Ots09,
Prop. 3.2] by Eulp(σ

−1
p )−1).

We now give the proof of Theorem (2.10).

Proof (of Theorem (2.10)): Let kmpn be the preimage of
∑

m0|d|m(Eulp(σ̂p)
−1(X))(ζdpn) ∈

Qp ⊗Z Fmpn under the isomorphism

H1
f (Qp,VpEFmpn/Q) =

⊕
v|p

(Qp ⊗Zp Ê(Fmpn,v))
≃−→

⊕
v|p

(Qp ⊗Zp OFmpn,v
) = Qp ⊗Z Fmpn

defined as the sum ⊕v|p logÊ of the formal logarithm of E/Fmpn,v. Claim (a) of Theorem (2.10)
follows by combining Proposition (2.16) with Proposition (2.27) and Lemma (2.7) (a, b). To
prove claim (b) of Theorem (2.10), we recall that Otsuki has proved, in [Ots09, Prop. 4.5], that

Eulp(σ̂p) · (⊕v|p logÊ)(E1(Fmpn,p)) = Zp ⊗Z OFmpn

if p is a good prime with ap ̸≡ 1 mod p, and the same proof works if p is an additive prime
(and n = 0). In this case, therefore, kmpn belongs to E1(Fmpn,p), as claimed.
We observe that Lemma (2.26) implies that (1 − eτ )kmpn is equal to the family (x̃mpn,v)v|p
with x̃mpn,v the element from Definition (2.25) with Q taken to be the completion of Fm at
the place lying below v (so that Q(ζpn) is the completion of Fmpn at v). By construction,

pEulp(σ̃p)x̃mpn,v belongs to Ê(MFmpn,v
), with MFmpn,v

the maximal ideal of Fmpn,v. Hence
(1− eτ )pEulp(σ̃p)kmpn belongs to E1(Fmpn,p), as claimed.
We now turn to the proof of claim (c). At the outset we note that it suffices to prove the
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claimed relations for the elements (⊕v|p logÊ)(kmpn) = Eulp(σ̂p)
−1 ·

∑
m0|d|m ζdpn . Equality (i)

then follows from the fact that by [Ots09, Prop. 2.5] one has

Trmpn+1/mpn
(
(Eulp(σ̂p)

−1(X))(ζdpn)
)
= Trdpn+1/dpn

(
(Eulp(σ̂p)

−1(X))(ζdpn)
)

=


apζdpn − 1N (p)ζdpn−1 if n > 2,

apζdpn − 1N (p)Eulp(σp)
−1ζd if n = 1,

(ap − 1N (p)σp − σ−1p )Eulp(σp)
−1ζd if n = 0.

As for the equality in (ii), we let d be a natural number with m0 | d | m and first recall that
Trℓdpn/dpn(ζℓdpn) vanishes if ℓ | d, so that

Trℓmpn/mpn
( ∑
(ℓm)0|d′|ℓm

ζd′pn
)
=

{
Trℓmpn/mpn(

∑
m0|d|m ζdpn) if ℓ | m,

Trℓmpn/mpn(
∑

m0|d|m ζℓdpn) if ℓ ∤ m.

Claim (ii) therefore follows from the observation that, for a natural number d′ | ℓm, one has

Trℓmpn/mpn(ζd′pn) =

{
ℓζd′pn if ℓ ∤ d′,
−σ−1ℓ ζd′/ℓ if ℓ | d′.

We show claim (d) of Theorem (2.10) working case by case.
If aℓ = 2, ℓ ∤ N and ℓ2 ∤ m, then ordℓ(m) = 1 and thus from Proposition (2.17) (b) we have

ν
(ℓ)
mpn ≡ c

(ℓ)
1 (1− aℓσ̃ℓ) +

1N (ℓ)

ℓ
(ℓjc

(ℓ)
1 σ̃2ℓ + c

(ℓ)
0 σ̃ℓ(ℓ− 1)) (mod I2

D(ℓ)
mpn

).

Since c
(ℓ)
0 = 0 and c

(ℓ)
1 = 1 we can calculate

ν
(ℓ)
mpn ≡ 1− 2σ̃ℓ + σ̃2ℓ = (1− σ̃ℓ) ≡ 0 (mod I2

D(ℓ)
mpn

).

If 1N (ℓ) = 0 then one can inductively show that c
(ℓ)
j = (aℓℓ )

j−1 for j ≥ 1. Proposition (2.17) (b)
now gives that, in this case,

ν
(ℓ)
mpn ≡ c

(ℓ)
1 (1− aℓσ̃ℓ) (mod I2

D(ℓ)
mpn

).

In both the remaining cases of claim (d) of Theorem (2.10) we have 1N (ℓ) = 0, hence the result

follows immediately from the above equation and definition of c
(ℓ)
j in these cases.

Finally, claim (e) is immediate from the definition of λ
(ℓ)
ordℓ(m)(X) upon noting that the element

ω
(ℓ)
ordℓ(m),0 = −σ̃ℓℓ

− ordℓ(m)NF
ℓordℓ(m)/Q differs from NI(ℓ)mpn

only by a unit in Zp[Gmpn ].

3. Neková̌r–Selmer complexes and the equivariant Tamagawa
Number Conjecture

In this section we recall some general aspects of the theory of Nekovář–Selmer complexes and
discuss examples of such complexes that will be important to us. Even though most material
contained in this section extends to general p-adic representations, we prefer to restrict atten-
tion to the setting most relevant to us – namely that of the representation given by the p-adic
Tate module of E. For a more in-depth treatment of Nekovář–Selmer complexes an interested
reader is invited to refer to [Nek06] or [BB25, § 3].
We freely use some of the notation and conventions introduced in Appendix B. In particular,
we write D(R) for the derived category of R-modules of a ring R and Dperf(R) for its full
triangulated subcategory of complexes that are perfect.
Given a profinite group G and a finitely generated R-module M endowed with a continu-
ous action of G , we write C •(G ,M) for the associated complex of continuous cochains and
RΓ(G ,M) for the object of D(R) defined by C •(G ,M). If F is a field with absolute Galois
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group GF := Gal(F/F ), then we abbreviate this to RΓ(F,M) := RΓ(GF ,M). If F is a number
field and the action of GF on M is unramified outside a finite set U of places of F , then M is
naturally a module for GF,U := Gal(FU/F ) with FU ⊆ F the maximal extension unramified
outside S and we write RΓ(OF,U ,M) := RΓ(GF,U ,M).

3.1. Neková̌r–Selmer structures

We begin by introducing a suitable variant of the notion of ‘Selmer structure’ used by Mazur
and Rubin in [MR04, Def. 2.1.1]. Recall that we have defined S(K) = SpNm∞, where m
denotes conductor of K and N is the conductor of E, and that Shapiro’s lemma gives natural
isomorphisms RΓ(OQ,U , TK/Q) ∼= RΓ(OK,U ,TpE) and RΓ(Qv, TK/Q) ∼=

⊕
w|v RΓ(Kw,TpE) for

every finite set U ⊆ S(K) and place v of Q.

(3.1) Definition. A ‘Nekovář–Selmer structure’ F for TK/Q consists of the following data:

• A finite set S(F) of places of Q that contains S(K).

• For every place v ∈ S(F) a complex RΓF (Qv, TK/Q) of Zp[G]-modules together with a
morphism iF ,v : RΓF (Qv, TK/Q)→ RΓ(Qv, TK/Q) in D(Zp[G]).

One then defines the ‘Nekovář–Selmer complex’ RΓF (K,TpE) as

cone
{
RΓ(OK,S(F),TpE)⊕

⊕
v∈S(F)

RΓF (Qv, TK/Q)
⊕v∈S(F)(locv−iF,v)−−−−−−−−−−−−→

⊕
v∈S(F)

RΓ(Qv, TK/Q)
}
[−1],

where locv denotes the natural localisation map

RΓ(OK,S(F),TpE)→
⊕
w|v

RΓ(Kw,TpE) = RΓ(Qv, TK/Q)

for every v ∈ S(F), and sets H i
F (K,TpE) := H i(RΓF (K,TpE)) for all i ∈ Z.

(3.2) Remark. For every Selmer structure F , the octrahedral axiom implies the existence of
an exact triangle

RΓF (K,TpE) RΓ(K,TpE)
⊕

v∈S(F)RΓ/F (Kv,TpE) RΓF (K,TpE)[1]

with RΓ/F (Kv,TpE) := cone(iF ,v)[−1].

(3.3) Examples. (a) (Relaxed structures) For every finite set Σ of places of Q that contains
S(K) we define a ‘relaxed’ Nekovář–Selmer structure FΣ,rel by taking

• S(FΣ,rel) := Σ,

• RΓFΣ,rel
(Qv, TK/Q) := RΓ((Qv, TK/Q) for all v ∈ S(FΣ,rel),

• iFΣ,rel
to be the identity map for all v ∈ S(FΣ,rel).

The associated Nekovář–Selmer complex RΓFΣ,rel
(K,TpE) then coincides with RΓ(OK,Σ,TpE).

(b) (Strict structures) For every finite set of places of Q that contains S(K) we define a
‘strict’ Nekovář–Selmer structure FΣ,str by means of

• S(FΣ,str) := Σ,

• RΓFΣ,str
(Qv, TK/Q) = 0 for all v ∈ S(FΣ,str),

• iFΣ,str,v := 0 for all v ∈ S(FΣ,str).

The associated Nekovář–Selmer complex RΓFΣ,rel
(K,TpE) then coincides with the ‘compact-

support’ cohomology complex RΓc(OK,Σ,TpE).

(3.4) Remark (Dual structures). For every finite place v of Q local Tate duality induces an
isomorphism (cf. [Nek06, Th. 5.2.6])

RHomZp(RΓ(Qv, TK/Q),Zp)[−2]
≃−→ RΓ(Qv, T

∗
K/Q(1))

∼= RΓ(Qv, TK/Q). (24)

(Here the second isomorphism is induced by the Weil pairing.) Any Nekovář–Selmer structure
F on TK/Q therefore naturally induces a dual structure F∗ by taking
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• S(F∗) := S(F),
• RΓF∗(Qv, TK/Q) := RHomZp(RΓ/F (Qv, TK/Q),Zp)[−2] if v is finite and zero otherwise,

• iF∗,v is the composite of RHomZp(iF ,v,Zp)[−2] and (24) if v is finite (and the zero map
otherwise).

3.2. Compactly supported étale cohomology

Fix a finite set Σ of places of Q that contains S(K). In the next section, we often use the
complex

C•K,Σ := RHomZp(RΓc(OK,Σ,TpE),Zp)[−3].
The following result records useful properties of the complex C•K,Σ.

(3.5) Lemma. Let Σ be a finite set of places of Q that contains S(K), and assume that E(K)
has no point of order p. The following then hold.

(a) C•K,Σ is a perfect object of D(Zp[G]) that has vanishing Euler characteristic in K0(Zp[G])

and is acyclic outside degrees one and two. There is a canonical isomorphism H1(C•K,Σ)
∼=

H1(OK,Σ,TpE) and a split-exact sequence

0 H2(OK,Σ,TpE) H2(C•K,Σ) (T+
K/Q)

∗ 0π

with T+
K/Q

:= H0(R, TK/Q).

(b) C•K,Σ admits a standard representative in the sense of Definition (B.3) with F 0 = 0.

Proof. The assumption that E(K)[p] vanishes implies that H1(OK,Σ,TpE) is Zp-torsion free
(cf. [BD21, Ex. 3.3 (b)]). That is, [BS21, Hyp. 2.16] is satisfied and so [BS21, Prop. 2.22 (ii)]
combines with [BS21, Prop. A.11] to imply claims (a) and (b). We only note that the description
of the cohomology given in claim (a) is a consequence of the fact that Artin–Verdier duality
(as in [BF01, Lem. 12 (b)]) induces an exact triangle

RΓ(OK,Σ,TpE) C•K,Σ (T+
K/Q)

∗[−2] RΓ(OK,Σ,TpE)[1]

in D(Zp[G]).

We next make a convenient choice of Zp[G]-basis for T+
K/Q. To do this, write wι for the

place of K corresponding with ιK , the restriction to K of the embedding ι : Q ↪→ C fixed

in § 1.3, and denote by D(ι)
K ⊆ G the associated decomposition group. Viewing wι as an

equivalence class of embeddings σ : K ↪→ C, one has that Zp ⊗Z (
⊕

σ∈wι
H1(Eσ

K(C),Z))+ =(
(
⊕

σ∈wι
Zpσ)⊗Z H1(E(C),Z))

)+
is a free Zp[D(ι)

K ]-module of rank one with basis

γK := (12(1 + c)ιK ⊗ γ+) + (12(1− c)ιK ⊗ γ−).
We then define b := bK to be the image of γK under the comparison isomorphism

Zp ⊗Z (
⊕

σ∈wι

H1(Eσ
K(C),Z))+ ∼= H0(Kwι ,TpE).

By construction, the element b is indeed a Zp[G]-basis of T
+
K/Q
∼=

⊕
w|∞H

0(Kw,TpE).

Let Σ be a finite set of places of Q that contains S(K), and write

ΘK,Σ := ϑC•
K,Σ,{b∗} : DetZp[G](C

•
K,Σ)

−1 → H1(OK,Σ,VpE)

for the map from Definition (B.2) with b∗ the Zp[G]-linear dual of the basis element b ∈ T+
K/Q

defined above.

(3.6) Theorem. Assume p > 3 is a prime number such that the image of ρE,p contains
SL2(Zp). If E does not have potentially good reduction at p, then we also assume that K does
not contain a primitive p-th root of unity. Then zKato

K is contained in the image of ΘK,S(K).
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Proof. This is proved by Burns and the first author in [BB25, Cor. 9.6 (i)].

(3.7) Remark. The result of Theorem (3.6) is directly related to the ‘equivariant Tamagawa
Number Conjecture’ for the pair (h1(E/K)(1),Zp[G]), see [BB25, Rk. 9.7] for more details.

3.3. Bloch–Kato Selmer complexes

Following Bloch and Kato [BK90], we define the local ‘finite-support’ cohomology complex

RΓf (Qv, TK/Q) :=

{⊕
w|v E(Kv)

∧[−1] if v ∤∞,
RΓ(Qv, TK/Q) if v =∞,

for every place v of Q. For every finite set of places Σ containing S(K), one then defines the
Bloch–Kato Selmer structure FΣ,BK for TK/Q as follows.

• S(FΣ,BK) = Σ,

• RΓFΣ,BK
(Qv, TK/Q) := RΓf (Qv, TK/Q) for all v ∈ Σ,

• iFΣ,BK,v is taken to be the map induced by the Kummer map if v ∈ Σ is a finite place
and the identity map if v =∞.

As is customary, we then replace any adornments FΣ,BK by simply f and, for example, write

RΓf (K,TpE) := RΓFΣ,BK
(K,TpE)

and H i
f (K,TpE) := H i

FΣ,BK
(K,TpE) for every i ∈ Z (this is consistent with the definition for

ℓ-adic fields given in § 2.2). Note that this definition of RΓf (K,TpE) does not depend on the
choice of Σ, see [BMC24, Lem. 2.5].

(3.8) Lemma. One has canonical identifications

H i
f (K,TpE) =


Sel∧p,E/K if i = 1,

Sel∨p,E/K if i = 2,

E(K)[p∞]∨ if i = 3,

0 otherwise.

Proof. See, for example, [BF24, Lem. 1].

(3.9) Remark. Local Tate duality induces an isomorphism

RΓ/f (Qℓ, TK/Q) ∼= RHomZp(RΓf (Qℓ, TK/Q),Zp)[−2] (25)

that is valid for every prime number ℓ. This is a special case of the general result of [BF01,
Lem. 19] and, in the case at hand, can also be checked explicitly as in [BF24, Lem. 2].

4. Neková̌r–Selmer complexes and weak main conjectures

The fundamental difficulty in deriving explicit statements such as Conjecture (1.1) from the
equivariant Tamagawa Number Conjecture is that the finite-support cohomology complex
RΓf (K,TpE) is rarely perfect as an object in D(Zp[G]) (cf. [BMC24, Lem. 5.1] or [EN18,
§ 4.1]). In this subsection we therefore construct auxiliary perfect Selmer complexes that ap-
proximate RΓ(K,TpE).
Throughout this subsection we fix an abelian number field K with Galois group G = GK :=
Gal(K/Q). For every place v of K, we denote the residue field at v by Fv.
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4.1. Unramified cohomology

Write Ẽ for the reduction of E modulo p, denote the group of non-singular Fv-rational points
on Ẽ by Ẽns(Fv), and set

(E1/E0)(Kℓ) :=
⊕

v|ℓ
(Ẽns(Fv)⊗Z Zp).

(4.1) Lemma. For every prime number ℓ there exists a natural number nℓ such that, if ℓ is
unramified in K, there exists an (nℓ × nℓ)-matrix Aℓ,K with the following properties.

(a) detZp[G](Aℓ,K) ·Zp[G] = ℓ · Eulℓ(σ−1ℓ ) ·Zp[G].

(b) There is an exact sequence

0 Zp[G]
⊕nℓ Zp[G]

⊕nℓ (E1/E0)(Kℓ) 0.
·Aℓ

In particular, we have the equality Fitt0Zp[G]

(
(E1/E0)(Kℓ)

)
= ℓ · Eulℓ(σ−1ℓ ) ·Zp[G].

(c) If L is a subfield of K, then πK/L(Aℓ,K) = Aℓ,L.

Proof. We abbreviate (a choice of) inertia subgroup of Gal(Q/Q) at ℓ to Iℓ := I(ℓ)
Q

. If ℓ ∤ p,
then we have an exact sequence (see, for example, the argument of [Kin11, Lecture 5, Lem. 5])

0 (TK/Q)
Iℓ (TK/Q)

Iℓ (E1/E0)(Kℓ) 0.
1−σ−1

ℓ (26)

This sequence may be used for the computation of the Fitting ideal because

(TK/Q)
Iℓ = (TpE ⊗Zp Zp[G])

Iℓ = (TpE)Iℓ ⊗Zp Zp[G]

is a free Zp[G]-module of rank nℓ := rkZp((TpE)Iℓ). (We have used here that ℓ is unramified
in K.) It follows that the Fitting ideal of (E1/E0)(Kℓ) is generated by

detZp[G](1− σ−1ℓ | (TK/Q)
Iℓ) = detZp(1− σ−1ℓ X | (TpE)Iℓ)|

X=σ−1
ℓ

= Eulℓ(σ
−1
ℓ ),

which generates the same ideal of Zp[G] as ℓ ·Eulℓ(σ−1ℓ ) because ℓ ̸= p. Upon fixing a Zp-basis
of (TpE)Iℓ , we therefore obtain an (nℓ × nℓ)-matrix Aℓ,K that represents multiplication by
1− σ−1ℓ on (TpE)Iℓ ⊗Zp Zp[G] and has all properties listed in the lemma.
In the case ℓ = p and E has good reduction at p, the claim follows from (the proof of)
[BMCW18, Lem. 4.4] (see also [BMC24, Lem. 6.12]). It therefore suffices to consider the case
that E has bad reduction at p. To do this, we first note that the reduction type of E (over K)
at v agrees with the reduction type of E (over Q) at p because p is assumed to be unramified in
K. If p is a prime of multiplicative reduction, then (E1/E0)(Kℓ) ∼=

⊕
v|p(F

×
v ⊗Z Zp) therefore

vanishes and so in this case the claim follows upon taking np = 1 and Ap = 1, and noting that
pEulp(σ

−1
p ) = p ± σ−1p is a unit in Zp[G]. If p is a prime of additive reduction, on the other

hand, then (E1/E0)(Kℓ) ∼=
⊕

v|pFv. Now, the latter is isomorphic to Fp[G] by the normal basis

theorem and so we deduce that its Fitting ideal over Zp[G] is generated by p = pEulp(σ
−1
p ),

and that we may take np = 1 and Ap = p.

4.2. Local finite-support cohomology

We define, for i ∈ {0, 1},

(E/Ei)(Kℓ) :=
∏

v|ℓ
(E(Kv)/Ei(Kv))

∧.

We will use without comment that if ℓ ̸= p, then (E/E1)(Kℓ) agrees with E(Kℓ) :=
⊕

v|ℓ(Kv)
∧

because E1(Kℓ) is pro-ℓ. Note that the Tamagawa number |E(Kv)/E0(Kv)| is independent of
the choice of place v | ℓ because K is an abelian field. For simplicity we therefore denote this
number as TamK,ℓ.
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(4.2) Lemma. Assume that p is unramified in K if E has additive reduction at p. Then the
following claims are valid.

(a) For every prime number ℓ, there exists a morphism

ρℓ : D
•
ℓ → (E/E1)(Kℓ)[−1]

in D(Zp[G]) with D
•
ℓ a perfect complex of Zp[G]-modules that has the following properties:

(i) D•ℓ is acyclic outside degree one.

(ii) D•ℓ admits a representative of the form [F → F ] for a free Zp[G]-module of finite
rank (here the first term is placed in degree 0).

(iii) One has ϑD•
ℓ ,∅(DetZp[G](D

•
ℓ )) = ℓ · Eulℓ(σ̃−1ℓ ) ·Zp[G].

(iv) If ℓ is unramified in K and p ∤ TamK,ℓ, then ρℓ is a quasi-isomorphism.

(b) For every point Q in E1(Kp), there exists a morphism

ρp,Q : D•p,Q := D•p ⊕ (Zp[G][−1])→ RΓf (Qp, TK/Q)

in D(Zp[G]) such that the restriction of H1(ρp,Q) to Zp[G] maps 1 to Q.

Proof. Write m for the conductor of K and m′ := mℓ− ordℓ(m) for the prime-to-ℓ part of m. We
can then define a Zp[Gm]-algebra map jℓ : Zp[Gm′ ]→ Zp[Gm] by sending σa to σ̃a (with σ̃a as
defined before Theorem (2.10) in § 2.3). Write jℓ(Aℓ,Fm′ ) for the matrix obtained by applying

jℓ to each of entry of the matrix Aℓ,m′ from Lemma (4.1) and set Ãℓ := πFm/K(jℓ(Aℓ,Fm′ )).

Let I(ℓ) ⊆ G be the inertia subgroup at ℓ, and πℓ : Zp[G]→ Zp[G/I(ℓ)] the natural restriction

map. It then follows Lemma (4.1) (c) that πℓ(Ãℓ) agrees with Aℓ := Aℓ,K . The exact sequence
from Lemma (4.1) (b) therefore fits into a commutative diagram of the form

0 Zp[G]
⊕nℓ Zp[G]

⊕nℓ coker(jℓ(Aℓ)) 0

0 Zp[G/I(ℓ)]⊕nℓ Zp[G/I(ℓ)]⊕nℓ (E0/E1)((K
Iℓ)ℓ) 0.

·Ãℓ

π
⊕nℓ
ℓ π

⊕nℓ
ℓ

·Aℓ

The surjectivity of the dashed arrow follows from the snake lemma, and multiplication by
jℓ(Aℓ) is injective by [Bou74, Ch. III, § 8.2, Prop. 3] because

det(jℓ(Aℓ,Fm′ )) = jℓ(det(Aℓ,Fm′ )) = jℓ(Eulℓ(σ
−1
ℓ )) = ℓ · Eulℓ(σ̃−1ℓ )

is a nonzero divisor. Indeed, for this it is enough to prove that χ(Eulℓ(σ̃
−1
ℓ )) = Eulℓ(χ(σ̃

−1
ℓ )) is

nonzero for ever character χ of G, which is true because the polynomial Eulℓ(X) has no root
of complex absolute value 1.
Note that (E0/E1)((K

Iℓ)ℓ) and (E0/E1)(Kℓ)ℓ) agree if ℓ is not an additive ramified prime
because in any such caseK andKIℓ have the same residue field at ℓ. If ℓ is additive and ramified
in K, then ℓ ̸= p by the assumed validity of Hypothesis (1.2) (iii) and so (E0/E1)((K

Iℓ)ℓ) = 0.

Writing D•ℓ for the perfect complex
[
Zp[G]

⊕nℓ
·Ãℓ−−→ Zp[G]

⊕nℓ
]
, where the first term is placed

in degree zero, in all cases we have therefore constructed a composite morphism

ρℓ : D
•
ℓ = coker(Ãℓ))[−1]→ (E0/E1)((K

Iℓ)ℓ)[−1]→ (E0/E1)(Kℓ)[−1]
in D(Zp[G]). We also note that D•ℓ is acyclic outside degree one and that one has

DetZp[G](D
•
ℓ ) = det(Ãℓ) ·Zp[G] = ℓ · Eulℓ(σ̃−1ℓ ) ·Zp[G].

It is then clear from the construction that D•ℓ has all the properties claimd in (i) – (iii).
Moreover, it follows from Lemma (4.1) (b) that ρℓ is a quasi-isomorphism if ℓ is unramified in
K and p ∤ TamK,ℓ. This proves claim (a) (iv), thereby concluding the proof of (a).
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To prove claim (b), we take ρp,Q to be any map that makes the diagram

Zp[G][−1] Zp[G][−1]⊕D•p D•p

E1(Kp)[−1] RΓf (Qℓ, TK/Q) (E/E1)(Kp)[−1]

17→Q ρp,Q ρp

commute.

(4.3) Remark. If one wants to account for Tamagawa numbers, on can modify D•ℓ as follows.
Since p is odd, each quotient E(Kv)/E0(Kv) is a cyclic group by the Kodaira–Néron Theorem
and hence (E/E0)(Kp) is a cyclic Zp[G]-module generated by tℓ, say. We therefore have a
well-defined map Zp[G]/TamK,ℓZp[G] → (E/E0)(Kℓ) induced by sending 1 to tℓ. We then
obtain a morphism

ρℓ,Tam,0 : D
•
ℓ,Tam :=

[
Zp[G]

·TamK,ℓ−−−−−→ Zp[G]
]
→ (E/E0)(Kℓ)[−1]

in D(Zp[G]) by taking ρ0ℓ,Tam to be the zero map and ρ1ℓ,Tam the map that sends 1 to tℓ. If we
define D•ℓ,Tam := D•ℓ ⊕D•ℓ,Tam and ρℓ,Tam := ρℓ⊕ ρℓ,Tam, then the modified complex D•ℓ,Tam also
has all of the properties listed in Lemma (4.2) (a) as long as one replaces (iii) by

ϑD•
ℓ,Tam,∅(DetZp[G](D

•
ℓ,Tam)) = ϑD•

ℓ ,∅(DetZp[G](D
•
ℓ )) · ϑD•

ℓ,Tam,0,∅(DetZp[G](D
•
ℓ,Tam,0))

= ℓ · Eulℓ(σ̃−1ℓ ) · TamK,ℓ ·Zp[G].

By defining Dp,Q,Tam := D•p,Tam ⊕ (Zp[G][−1]) one can then also adapt the construction made
in Lemma (4.2) (b).

4.3. Global finite-support cohomology

In this section we use the complexes from Lemma (4.2) to define an auxiliary Nekovář–Selmer
complex. To do this, let Π be a finite set of finite places of K, fix Q ∈ E1(Kp), and define a
Selmer structure FΣ,Π,Q on TK/Q as follows. We take S(FΣ,Π,Q) := Σ ∪Π, set

RΓFΣ,Π,Q
(Qℓ, TK/Q) :=


D•ℓ if ℓ ∈ Π \ {p},
D•p,Q if ℓ = p ∈ Π,

Zp[G][−1] if ℓ = p ̸∈ Π,

0 otherwise,

and define iFΣ,Π,Q,v to be the composite map

RΓFΣ,Π,Q
(Qv, TK/Q)→ RΓf (Qv, TK/Q)→ RΓ(Qv, TK/Q),

where the first arrow is ρℓ, ρp,Q (both constructed in Lemma (4.2)), or the zero map as appro-
priate. If p is a good prime that ramifies in K, then by ρp,Q we mean the restriction of ρp,Q to
Zp[G][−1], so the map induced by sending 1 to Q.
To lighten notation, we then introduce the abbreviations

D̃•K,Σ,Π,Q := RΓFΣ,Π,Q
(K,TpE) and DK,Σ,Π,Q := RHomZp(D̃

•
K,Σ,Π,Q,Zp)[−3].

The next result records the basic properties of these complexes.

(4.4) Lemma. Assume that E(K)[p] = 0. For every Q ∈ E1(Kp), finite set Σ ⊇ S(K) of
places of Q, and finite set Π of finite places of Q, the following claims are valid.

(a) One has an inclusion

Fitt0Zp[G](H
2(D̃•K,Σ,Π,Q)) ⊆ Fitt0Zp[G](H

2
f (K,TpE)).

(b) Let F be a subfield of K and define Q′ := TrK/F (Q). Then one has

πK/F (Fitt
0
Zp[GK ](H

2(D̃•K,Σ,Π,Q))) = Fitt0Zp[GF ](H
2(D̃•F,Σ,Π,Q′)).
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(c) Let Σ′ be a finite set of places of K that contains Σ. Then one has an exact triangle⊕
ℓ∈(Σ′\Σ)RΓf (Qℓ, TK/Q) D̃•K,Σ′,Π,Q D̃•K,Σ,Π,Q

⊕
ℓ∈(Σ′\Σ)RΓf (Qℓ, TK/Q)[1].

(d) If ℓ ∈ Π \ S(K), then D̃•K,Σ,Π,Q = D̃•K,Σ\{ℓ},Π\{ℓ},Q.

Proof. At the outset we define

D̃•loc,Π,Q :=
⊕

ℓ∈Π∪{p}

RΓFΣ,Π,Q
(Qℓ, TK/Q)

and ρΠ := ρp,Q ⊕
⊕

ℓ∈Π ρℓ, and note that the definition of D•K,Σ,Π,Q implies that there is an
exact triangle

RΓc(OK,Σ,TpE) D̃•K,Σ,Π,Q D̃•loc,Π,Q RΓc(OK,Σ,TpE)[1]. (27)

This combines with the definition of the complex RΓf (K,TpE) and the octahedral axiom to
yield an exact triangle of the form

D̃•K,Σ,Π,Q RΓf (K,TpE) cone(ρΠ)⊕
⊕

ℓ∈Σ\(Π∪{p}RΓf (Qℓ, TK/Q) D̃•K,Σ,Π,Q[1].

(28)
Since the cone of the morphism ρΠ and

⊕
ℓ∈Σ\ΠRΓf (Qℓ, TK/Q) both have no nonzero cohomo-

logy in degrees greater than one, this exact triangle induces a surjection

H2(D̃•K,Σ,Π,Q) ↠ H2
f (K,TpE).

A standard property of Fitting ideals then combines with this surjection to imply the inclusion
claimed in (a). Similarly, the properties of Fitting ideals reduce claim (b) to the claim that
one has an isomorphism

H2(D̃•K,Σ,Π,Q)⊗Zp[GK ] Zp[GF ] ∼= H2(D̃•K,Σ,Π,Q′).

Now, the triangle (27) combines with the assumption E(K)[p] = 0 to imply D̃•K,Σ,Π,Q is acyclic
in degree greater than two and so the desired isomorphism follows from Lemma (B.13) (a) if
we can demonstrate that one has an isomorphism

D̃•K,Σ,Π,Q ⊗LZp[GK ] Zp[GF ] ∼= D̃•F,Σ,Π,Q′

in D(Zp[GF ]). To do this, we first note that one has D•p,Q ⊗LZp[GK ] Zp[GF ] ∼= D•p,Q′ and

D•ℓ ⊗LZp[GK ] Zp[GF ] ∼= D•ℓ , as can be checked from Lemma (4.1) (c) and the explicit definitions
of these complexes. In addition, one has commutative diagrams

D•K,p,Q ⊗LZp[GK ] Zp[GF ] E(Kp)[−1] D•K,ℓ ⊗LZp[GK ] Zp[GF ] (E/E0)(Kℓ)[−1]

DF,p,Q′ E(Fp)[−1] D•F,ℓ (E/E0)(Fℓ),

≃

ρK,p,Q

TrK/F ≃

ρK,ℓ

TrK/F

ρF,p,Q ρF,ℓ

where we have introduced subscripts K and F to emphasise the field of definition, and ρK,p,Q

and ρK,ℓ denote the maps induced by ρK,p,Q and ρK,ℓ, respectively. The claimed property of

D̃•K,Σ,Π,Q then follows by combining this with the triangle (27) and the well-known isomorphism

RΓc(OK,Σ,TpE)⊗LZp[GK ] Zp[GF ] ∼= RΓc(OF,Σ,TpE),

(see, for example, [FK06, Prop. 1.6.5 (3)]). Claim (c) follows from (27) and the triangle⊕
ℓ∈(Σ′\Σ)

RΓf (Qℓ, TK/Q)→ RΓc(OK,Σ′ ,TpE)→ RΓc(OK,Σ,TpE)→
⊕

ℓ∈(Σ′\Σ)

RΓf (Qℓ, TK/Q)[1]

via the octrahedral axiom. Finally, claim (d) is a consequence of the fact that, if ℓ ∈ Π \ S(K)
(and so ℓ ̸= p is a prime of good reduction that is unramified in K), then the map ρℓ : D

•
ℓ →

RΓf (Qℓ, TK/Q) is a quasi-isomomorphism by Lemma (4.2) (a) (iv) (cf. also the argument of
[BMC24, Lem. 2.5]).
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(4.5) Lemma. Assume E(K)[p] = 0 and, for given Q ∈ E1(Kp), consider the composite
morphism

ρ′p,Q : C•K,Σ −→ RΓ/f (Qp, TK/Q) ∼= RHomZp(RΓf (Qp, TK/Q),Zp)[−2]
ρ∗p,Q−−−→ RHomZp(D

•
p,Q,Zp)[−2] = RHomZp(D

•
p,Zp)[−2]⊕Zp[G][−1]

−→ Zp[G][−1].
Here the first arrow is the natural localisation map composed with the morphism RΓ(Qp, TK/Q)→
RΓ/f (Qp, TK/Q), the isomorphism is by local Tate duality (25), ρ∗p,Q := RHomZp(ρp,Q,Zp)[−2]
is the dual of the map ρp,Q defined in Lemma (4.2) (b), and the last arrow is projection onto the
direct summand Zp[G][−1]. Then the map H1(ρ′p,Q) induced by ρ′p,Q on cohomology in degree
one coincides with the composite map

H1(OK,Σ,TpE)→ H1
/f (Qp, TK/Q)

PK(·,Q)−−−−−→ Zp[G].

Proof. Using the (dual of the) representative of C•K,Σ constructed in Lemma (3.5), we have a
commutative diagram

0 Zp[G] Zp[G] 0

P P H2
c (OK,Σ,TpE) 0,

ρ2p,Q H2(ρp,Q)

ϕ∗

where the first commutative square represents the morphism ρp,Q composed with the morph-
ism RΓf (Qp, TK/Q)[−1] → RΓc(OK,Σ,TpE) ∼= RHomZp(C

•
K,Σ,Zp)[−3] (and ρ2p,Q is the map

induced by ρp,Q in degree two). By dualising, we therefore obtain the commutative diagram

0 H1(OK,Σ,TpE) P P

0 Zp[G] Zp[G] 0,

H0(ρ′p,Q) (ρ′p,Q)0

ϕ

where now the second commutative square represents the morphism ρ′p,Q (and (ρ′p,Q)
0 is the map

induced by ρ′p,Q in degree zero). In particular, H0(ρ′p,Q) coincides with the dual of H2(ρp,Q).

The claim therefore follows from the observation that H2(ϱp,Q) is the composite map

Zp[G]
17→Q−−−→ H1

f (Qp, TK/Q)→ H2
c (OK,Σ,TpE)

so that its dual map is given by the composite

H1(OK,Σ,TpE)→ H1
/f (Qp, TK/Q) ∼= H1

f (Qp, TK/Q)
∗ → Zp[G].

Here the first arrow is the localisation map (followed by projection), the isomorphism is induced
by the pairing (·, ·)E/K , and the last arrow is evaluation at Q.

4.4. Determinantal ideals

In this section we establish a connection between elements in the image of the map ΘK,Σ

(defined before the statement of Theorem (3.6)) and the Selmer complexes D̃K,Σ,Π,Q introduced
in the last section. Our main result in this direction is as follows.

(4.6) Proposition. Assume that E(K)[p] = 0, fix Q ∈ E1(Kp), and let Σ be a finite set
of places of K that contains S(K). If Π ⊆ Σ is a subset of rational primes that are either
unramified in K or at which E has multiplicative reduction, then for every

• a ∈ DetZp[G](C
•
K,Σ)

−1,

• t ∈
∏

ℓ∈ΠAnnZp[G]((E/E0)(Kℓ))
−1,#.
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• ν ∈
(∏

ℓ∈Π(ℓ
−1Eulℓ(σ̃

−1
ℓ )−1NI(ℓ)K

Zp[G] +Zp[G]
)
,

one has the containments

ν · PK(ΘK,Σ(a), Q) ∈ Fitt0Zp[G](H
2(D̃•K,Σ,Π,Q))

#, (29)

t · ν · PK(ΘK,Σ(a), Q) ∈ Zp[G]. (30)

Before proving Proposition (4.6), we first establish an auxiliary result that concerns the maps

ϑK,Σ,Π,Q := ϑD•
K,Σ,Π,Q,{b∗} and ϑ̃K,Σ,Π,Q := ϑ

D̃•
K,Σ,Π,Q,∅

(with b∗ the dual of the Zp[G]-basis b of T
+
K/Q from § 3.2) defined as the relevant instances of

Definition (B.2).
Setting D•loc,Π,Q := RHomZp(D̃

•
loc,Π,Q,Zp)[−2] and dualising the triangle (27) gives an exact

triangle

D•K,Σ,Π,Q C•K,Σ D•loc,Π,Q D•K,Σ,Π,Q[1].
ρloc,Π,Q

(31)

To state the next lemma below, we will make use of the isomorphism

DetZp[G](C
•
K,Σ)

−1 ∼= DetZp[G](D
•
K,Σ,Π,Q)

−1 ⊗DetZp[G](D
•
loc,Π,Q)

−1

∼= DetZp[G](D
•
K,Σ,Π,Q)

−1. (32)

Here the first isomorphism is induced by the the triangle (31) and the second isomorphism is
induced by the isomorphism

(⊗ℓ∈ΠEv(aℓ)) : DetZp[G](D
•
loc,Π,Q)

−1 ≃−→ DetZp[G](Zp[G][−1])−1 = Zp[G]

with aℓ the canonical element of DetZp[G](D
•
ℓ ) that satisfies ϑD•

ℓ ,∅(aℓ) = ℓ · Eulℓ(σℓ) (which
exists by Lemma (4.2) (a) (iii)).

(4.7) Lemma. Let Q ∈ E1(Kp). If E(K)[p] = 0, then the following claims are valid.

(a) Put ηΠ :=
∏

ℓ∈Π(ℓ · Eulℓ(σ
−1
ℓ )) for brevity. Then the following diagram commutes.

DetZp[G](C
•
K,Σ)

−1 H1(OK,Σ,TpE)

DetZp[G](D
•
K,Σ,Π,Q)

−1 Qp[G].

ΘK,Σ

≃(32) ±η−1
Π ·PK(·,Q)

ϑK,Σ,Π,Q

(b) One has the equality ϑK,Σ,Π,Q(DetZp[G](D
•
K,Σ,Π,Q)

−1) = ϑ̃K,Σ,Π,Q(DetZp[G](D̃
•
K,Σ,Π,Q)

−1)#

and an inclusion

Fitt0Zp[G](H
1(D̃K,Σ,Π,Q)

∨
tor) · ϑ̃K,Σ,Π,Q(DetZp[G](D̃

•
K,Σ,Π,Q)

−1) ⊆ Fitt0Zp[G](H
2(D̃•K,Σ,Π,Q)).

Proof. Claim (a) follows from Proposition (B.7) (a) (i), applied for every Evaℓ , and Proposi-
tion (B.7) (b) (combined with Lemma (4.5)).
To justify claim (b), we first note that, by Lemma (4.2) (a) (ii), the complex D•loc,Π,Q admits a

representative of the form [F ⊕Zp[G]
∂⊕0−−→ F ] for some free Zp[G]-module F of finite rank and

endomorphism ∂ of F . In the following we set F ′ := F ⊕Zp[G] and fix a Zp[G]-basis y1, . . . , ys
of F ′ such that F is identified with

⊕s
i=2Zp[G]yi.

Write [P
ϕ→ P ] for the representative of C•K,Σ provided by Lemma (3.5). That is, P is

a free Zp[G]-module of rank d, say, with basis x1, . . . , xd, and P = P ′ ⊕ (TK/Q)
+ with

P ′ :=
⊕d

i=2Zp[G]xi. From this choice of bases we see that, by (31) and the definition of

the mapping cone, that D•K,Σ,Π,Q is represented by [P
ϕ′
→ P ⊕ F ′ ∂′

→ F ] with the first term

placed in degree one. Here ϕ′ = −(ϕ⊕ ρ1) and ∂′ = −ρ2 + ∂ with ρi the component in degree
i of the morphism ρ : C•K,S → D•loc,Π,Q.
We next recall from (3) that for every Zp[G]-module M we have a canonical isomorphism
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HomZp(M,Zp)
≃−→ HomZp[G](M,Zp[G])

#. It follows that the complex D̃•K,Σ,Π,Q, which is iso-

morphic to the (shifted) Zp-linear dual of D•K,Σ,Π,Q, can be represented by [F
∂#,tr

−−−→ P ⊕

F ′
ϕ′#,tr

−−−→ P ] with the first term placed in degree zero. Here the maps ∂′#,tr and ϕ′#,tr are
defined by means of the matrices that are obtained by applying the involution # to the trans-
pose of the matrices representing ∂′ and ϕ′, respectively. This shows that D̃•K,Σ,Π,Q admits a
standard representative in the sense of Definition (B.3) and so the inclusion claimed in (b) is
a special case of Proposition (B.10) (b).

To prove the remainder of claim (b), we note that the complex [F
∂′#,tr

−−−→ P ′ ⊕ F ′ ϕ′#,tr

−−−→ P ]
is a perfect complex of Zp[G]-modules that is both acyclic outside degrees one and two (this

uses that ∂#,tr, and hence also ∂′#,tr, is injective) and has vanishing Euler characteristic in
K0(Zp[G]). We may then apply Proposition (B.7) (c) to deduce that

ϑ̃K,Σ,Π,Q(DetZp[G](D̃
•
K,Σ,Π,Q)

−1)#
(3)
= ϑ̃K,Σ,Π,Q(DetZp[G](RHomZp[G](D

•
K,Σ,Π,Q,Zp[G]))

−1)

= ϑK,Σ,Π,Q(DetZp[G](D
•
K,Σ,Π,Q)

−1),

as claimed.

We can now give the proof of Proposition (4.6).

Proof (of Proposition (4.6)): We first explain how to deduce the inclusion (29) from Lemma
(4.7). To do this, we note that, as H1

f (K,TpE) = E(K) ⊗Z Zp is assumed to be Zp-torsion
free, it follows from the triangle (28) that we have an identification

H1(D̃K,Σ,Π,Q)tor = H0
(
cone(ρ̃loc,Π,Q)

)
tor

= ker
{⊕

ℓ∈Π

(
Zp[G]

nℓ/(jℓ(Aℓ))
)
−→

⊕
ℓ∈Π

(E/E0)(Kℓ)
}

= ker
{⊕

ℓ∈Πbad

(
Zp[G]/(ℓEulℓ(σ̃ℓ))

)
−→

⊕
ℓ∈Πbad

(E/E0)(Kℓ)
}

=
⊕

ℓ∈Πbad

(
AnnZp[G]((E0/E1)(Kℓ))/(ℓEulℓ(σ̃ℓ))

)
.

Here Πbad ⊆ Π denotes the subset of places at which E has bad reduction (in which case nℓ = 1
and jℓ(Aℓ) = ℓEulℓ(σ̃ℓ)), and we have used that any prime ℓ ∈ Π \ Πbad is by assumption un-
ramified inK and so does not contribute to the above kernel because ρℓ is an quasi-isomorphism
for any such ℓ by Lemma (4.2).
Before proceeding, it is convenient to first make a general observation concerning an ideal a of
Zp[G] that contains a nonzero divisor x. In any such situation one has(

a/Zp[G]x
)∨ ∼= (

(Zp[G]x)
∗/a∗

)# ∼= (
(x−1Zp[G])/a

−1)# ∼= Zp[G]/(xa
−1)#, (33)

where we have used the isomorphism a∗ ∼= a−1 := {y ∈ Qp[G] | ya ⊆ Zp[G]} that is valid
because a contains a nonzero divisor (cf. [Bas63, Prop. 6.1 (4)]). From (33) we then conclude
that Fitt0Zp[G]((a/Zp[G]x)

∨) = (xa−1)#. This general observation applied with a and x taken to

be AnnZp[G]((E0/E1)(Kℓ)) and ℓEulℓ(σ̃
−1
ℓ ), respectively, shows that Fitt0Zp[G](H

1(D̃K,Σ,Π,Q)
∨
tor)

is equal to the product ideal∏
ℓ∈Πbad

ℓEulℓ(σ̃
−1
ℓ ) ·AnnZp[G]((E0/E1)(Kℓ))

−1,#.

Now, the factors ℓEulℓ(σ̃
−1
ℓ ) cancel with the corresponding factors in the definition of the

element η−1Π from Lemma (4.7), and so Lemma (4.7) (a) implies that(∏
ℓ∈Πbad

AnnZp[G]((E0/E1)(Kℓ))
−1,#) · PK(ΘK,Σ(a), Q)

is contained in (∏
ℓ∈Π\Πbad

ℓEulℓ(σ̃
−1
ℓ )

)
· Fitt0Zp[G](H

2(D̃•K,Σ,Π,Q))
#.
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It now only remains to observe that, for every ℓ ∈ Πbad, one has that AnnZp[G]((E0/E1)(Kℓ))
−1,#

contains ℓ−1Eulℓ(σ̃
−1
ℓ )−1NI(ℓ)K

Zp[G] + Zp[G] because AnnZp[G]((E0/E1)(Kℓ)) is generated by

Eulℓ(σ̃ℓ) and the augmentation ideal I(I(ℓ)K ) as a consequence of Lemma (4.1) and the as-

sumption that Πbad contains no additive primes. Since I(ℓ)K is trivial for any ℓ ∈ Π \ Πbad by
assumption (and so ℓ−1Eulℓ(σ̃ℓ)

−1NI(ℓ)K

Zp[G]+Zp[G] simplifies to ℓ−1Eulℓ(σ̃ℓ)
−1Zp[G] for such

ℓ), this concludes the proof of (29).
As for the proof of (30), this follows from a very similar argument and so we only provide a
sketch. Using the complexes defined in Remark (4.3), we may define a modified Nekovář–Selmer
structure FTam

Σ,Π,Q by taking S(FTam
Σ,Π,Q) := Σ ∪Π and

RΓFTam
Σ,Π,Q

(Qℓ, TK/Q) :=


D•ℓ,Tam if ℓ ∈ Π \ {p},
D•p,Q,Tam if ℓ = p ∈ Π,

Zp[G][−1] if ℓ = p ̸∈ Π,

0 otherwise.

Now, if we set ηTamΠ :=
∏

ℓ∈Π(TamK,ℓ · ℓ · Eulℓ(σ−1ℓ )) and D̃Tam := RΓFTam
Σ,Π,Q

(OK,Σ,TpE), then

the argument of Lemma (4.7) (a) shows that we have a commutative diagram of the form

DetZp[G](C
•
K,Σ)

−1 H1(OK,Σ,TpE)

DetZp[G](RHomZp(D̃Tam,Zp)[−3])−1 Qp[G],

ΘK,Σ

≃ ±(ηTam
Π )−1·PK(·,Q)

ϑTam

where the map ϑTam is defined as the relevant special case of Definition (B.2). In addition, the
argument of Lemma (4.7) (b) shows that

Fitt0Zp[G](H
1(D̃Tam)

∨
tor) · (imϑTam)# ⊆ Fitt0Zp[G](H

2(D̃•Tam)) ⊆ Zp[G].

The inclusion (30) can therefore be proved in exactly the same way as the inclusion (29) once
we have observed that H1(D̃Tam)tor identifies with⊕

ℓ∈Πbad

(
AnnZp[G]((E/E0)(Kℓ))/(TamK,ℓ)

)
⊕
(
AnnZp[G]((E0/E1)(Kℓ))/(ℓEulℓ(σ̃ℓ))

)
.

4.5. The proof of Theorem (1.4) (b)

In this section we prove Theorem (1.4) (b), our main result towards the ‘weak main conjecture’
of Mazur and Tate. If the Euler factors Eulℓ(σ̃ℓ)

−1 are invertible in Zp[Gmpn ] for all prime
divisors ℓ of m and the element kmpn from Theorem (2.10) is in E1(Kp), then this is a straight-
forward consequence of Theorem (3.6) and Proposition (4.6). However, this will not be the
case in general and so a more detailed analysis is required in order to prove Theorem (1.4) (b).
This will be done in the rather technical Lemma (4.9) below, where we will use the Euler
system norm relations in order to prove that the denominators arising from factors of the form
Eulℓ(σ̃ℓ)

−1 can be ‘absorbed’ by zKato
mpn .

Before stating this result, we first give a different characterisation of the set of prime numbers

C
(p)
× (K) that was defined in Remark (1.5) (c).

(4.8) Lemma. A prime number ℓ ̸= p belongs to C
(p)
× (K) if and only if Eulℓ(σ̃ℓ) ∈ Zp[G]

×.

Proof. Let G(p) ⊆ G denote the p-Sylow subgroup of G and set ∆ := G/G(p). We then write ∆̂

for the group of all characters χ : ∆→ Qp
×
and let O be the unramified extension of Zp that is

generated by the values of all χ ∈ ∆̂. An element of Zp[G] is then a unit if and only if it is a unit
in the integral extension O[G] of Zp[G]. Now, one has a decomposition O[G] ∼=

⊕
χ∈∆̂O[G

(p)]

induced by the isomorphism O[∆]
≃−→

⊕
χ∈∆̂O, x 7→ (χ(x))χ. Each O[G(p)] is a local ring with
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maximal ideal (p, IO,G(p)), so this argument proves that an element x of Zp[G] is a unit if and

only if χ(x) ̸≡ 0 mod p for all χ ∈ ∆̂. To prove that Eulℓ(σ̃ℓ) ∈ Zp[G]
× if and only if ℓ

satisfies the explicit condition given in the definition of C
(p)
× in Remark (1.4) (c) it now suffices

to prove that the set {χ(σ̃ℓ) : χ ∈ ∆̂} coincides with the group of f
(p)
K/Q-th roots of unity of

Qp
×
. For this it is in turn enough to prove that the order of (σ̃ℓ)|K in G is equal to the residue

degree of ℓ in K/Q or, equivalently, the order of (σℓ)|K′ with K
′ the maximal subextension of K

unramified at ℓ. To do this, we write m for the conductor of K and setM := mℓ− ordℓ(m). Then
K ′ = K ∩FM so that the restriction map induces an isomorphism Gal(Fm/K) ∼= Gal(FM/K

′).
Given this, it follows directly from the definition of σ̃ℓ that a power σ̃nℓ belongs to Gal(Fm/K)
if and only if σnℓ belongs to Gal(FM/K

′), as required to prove the claim.

To prepare for the statement of the next result, we write the conductor ofK asmpn withm ∈ N
coprime to p and n ∈ Z≥0. Given a subset L ⊆ Smpn , we set (mp

n)L := mpn·(
∏

ℓ∈L ℓordℓ(m))−1

and zKato
L := zKato

(mpn)L
. Write FL := F(mpn)L and GL := G(mpn)L . We also define the following

sets of primes,

Z (K) := {ℓ | mpn : ℓ ∤ N, ℓ ̸∈ C(p)
× }

Y (K) := {ℓ | m : ℓ ∈ C(p)
× }.

For further ease of notation we write Np = N · p− ordp(N) and define

ηK,Np
:=

∏
ℓ|Np, ℓ̸∈Y (K)

(Eulℓ(σ̃ℓ)
−1 · ν(ℓ)mpn)

# ∈ Qp[Gmpn ].

(4.9) Lemma. Assume p is unramified in K if E has additive reduction at p, and suppose
(aL )L⊆Z (mpn) is a collection of ideals aL ⊆ Zp[GL ] with the property that

(pEulp(σ
−1
p ))−1L (p) · ηK,Np · PFL

(zKato
L ,TrFmpn/FL

(Q)) ∈ aL (34)

for all Q ∈ E1(Fm,p). Then

(1− eτ )θMT
K ∈ (

∏
ℓ∈Y (K)

ν
(ℓ)
mpn)

# · πFmpn/K

(∑
L⊆Z (mpn)

aL NFmpn/FL

)
⊆ Zp[G]. (35)

If ap ̸≡ 1 mod p and p is either of good reduction for E a prime of potentially good reduction
for E, then the same conclusion holds with (1− eτ )θMT

K replaced by θMT
K .

Proof. This is an extension of the argument used by Otsuki in [Ots09, Lem. 4.2].
At the outset we note that, by Lemma (4.8) the Euler factor Eulℓ(σ̃ℓ) is a unit in Zp[G] for a
prime number ℓ | m if and only if ℓ ∈ Y (K). In order to simplify some statements later on it

is convenient to set ν
(ℓ)
mpn := 1 if ℓ | N and ℓ ∤ m. From the equation

(1− eτ )θMT
mpn = (1− eτ )

( ∏
ℓ∈Sm

Eulℓ(σ̃ℓ)
−1 · ν(ℓ)mpn

)# · PFmpn
(yKato

mpn , kmpn)

=
( ∏
ℓ∈SmNp

Eulℓ(σ̃
−1
ℓ )−1 · ν(ℓ),#mpn

)
· PFmpn

(zKato
mpn , (1− eτ )kmpn),

proved in Theorem (2.10) (a), one sees that it is enough to prove that( ∏
ℓ∈SmNp\Y (K)

Eulℓ(σ̃
−1
ℓ )−1 · ν(ℓ),#mpn

)
· PFmpn

(zKato
mpn , (1− eτ )kmpn) ∈

∑
L⊆Z (K)

aL NFmpn/FL
.

By Theorem (2.10) (e) we can write, for each prime ℓ | m,

Eulℓ(σ̃ℓ)
−1ν

(ℓ)
mpn = αℓ + βℓEulℓ(σ̃ℓ)

−1NI(ℓ)mpn

with suitable αℓ, βℓ ∈ Zp[Gmpn ]. For any subset L of Z (K), we then define IL to be the

subgroup of Gmpn generated by I(ℓ)mpn for ℓ ∈ L and note that IL =
∏

ℓ∈L I
(ℓ)
mpn because the
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I(ℓ)mpn are disjoint. As a consequence, we also have NFmpn/FL
=

∏
ℓ∈L NI(ℓ)mpn

.

We can then write(∏
ℓ∈SmNp\Y (K)

Eulℓ(σ̃
−1
ℓ )−1 · ν(ℓ),#mpn

)
=

(∏
ℓ∈Z (K)

Eulℓ(σ̃
−1
ℓ )−1 · ν(ℓ),#mpn

)
· ηK,Np

=
(∏

ℓ∈Z (K)
(α#

ℓ + β#ℓ Eulℓ(σ̃
−1
ℓ )−1NI(ℓ)mpn

)
)
· ηm,Np

=
∑

L⊆Z (K)

AL (
∏
ℓ∈L

Eulℓ(σ̃
−1
ℓ )−1)NFmpn/FL

· ηK,Np (36)

with suitable AL ∈ Zp[Gmpn ] and the sum ranging over all subsets of Z (K) (including the
empty set). We then calculate, by Lemma (2.7) (b, c), that for every subset L of Z (K)

NFmpn/FL
· PFmpn

(zKato
mpn , (1− eτ )kmpn)

= PFmpn
(coresFmpn/FL

(zKato
mpn ), (1− eτ )kmpn)

= PFL
(coresFmpn/FL

(zKato
mpn ),TrFmpn/FL

((1− eτ )kmpn)) ·NFmpn/FL
. (37)

In addition, by Theorem (2.10) (b), one has

(1− eτ )kmpn = Q+ (pEulp(σp))
−1P (38)

with suitable Q ∈ E1(Fmpn) and P ∈ E1(Fm). For every subset L of Z (K), we then have

PFL
( · ,TrFmpn/FL

((1− eτ )kmpn))

= PFL
( · ,TrFmpn/FL

(Q+ (pEulp(σp))
−1P ))

= PFL
( · ,TrFmpn/FL

(Q))

+ (pEulp(σ
−1
p ))−1 · PFL∪{p}(NFL /FL∪{p} ·,TrFmpn/FL

(P ))NI(p)mpn
(39)

because PFmpn
(·, ·) is #-semilinear in the second component by Lemma (2.7) (b). Combining

(36), (37) and (39) we have thereby proved that(∏
ℓ∈SmNp\Y (K)

Eulℓ(σ̃
−1
ℓ )−1 · ν(ℓ),#mpn

)
· PFmpn

(zKato
mpn , (1− eτ )kmpn)

=
∑

L⊆Z (K)

A′L (
∏

ℓ∈L \{p}

Eulℓ(σ̃
−1
ℓ )−1) · ηK,Np · PFL

(coresFmpn/FL
(zKato

mpn ), QL )NFmpn/FL

with

A′L := (pEulp(σ
−1
p ))−1L (p) ·AL \{p} and QL :=


Q if L = ∅,
TrFmpn/FL

(Q) if p /∈ L ,

TrFmpn/FL
(P ) if p ∈ L .

In light of the Euler system relation coresFmpn/FL
(zKato

mpn ) = (
∏

ℓ∈L \{p} Eulℓ(σ
−1
ℓ )

)
· zKato

L we
have therefore proved that

(1− eτ )θMT
mpn =

∑
L⊆Z (K)

A′L · ηK,Np · PFL
(zKato

L , QL )NFmpn/FL
, (40)

and this combines with the assumption (34) to imply the claimed inclusion (35).
If ap ̸≡ 1 mod p, then kmpn belongs to E1(Fmpn) by Theorem (2.10) (b) so that (38) holds
without the factor (1− eτ ) and with P = 0. With this changed definition of P , (40) then holds
without the factor (1 − eτ ). Again considering the assumption (34) one sees that the second
claim of the theorem holds as well.

(4.10) Remark. The proof of Lemma (4.9) shows that if p is a prime number with the property
that pEulp(σp) belongs to Zp[Gmpn ]

×, then (34) can be replaced by the simpler condition

ηm,Np · PFL
(zKato

L , (1− eτ ) · TrFmpn/FL
(kmpn)) ∈ aL

in order for (35) to hold.
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We now give the proof of Theorem (1.4) (b).

Proof of Theorem (1.4) (b): Write the conductor of K as mpn with p ∤ m and n ∈ Z≥0. By
Theorem (2.10) (d) we can write, for each ℓ | m,

Eulℓ(σ̃ℓ)
−1ν

(ℓ)
mpn = αℓ + βℓEulℓ(σ̃ℓ)

−1NI(ℓ)mpn

with suitable αℓ, βℓ ∈ Zp[Gmpn ]. Let L be a subset of Z (K). Using the element ηK,Np defined
before Lemma (4.9), we now set

η′L := (pEulp(σ
−1
p ))−1L (p)ηK,Np and ΠL :=

{
{p} ∪ (SN \ Y (K)) if p ∈ L ,

SN \ Y (K) if p /∈ L .

By construction, we then have

η′L ∈
∏

ℓ∈ΠL

(
ℓ−1Eulℓ(σ̃

−1
ℓ )−1NI(ℓ)mpn

Zp[G] +Zp[Gmpn ]
)
.

Now, assuming condition (ii) of Theorem (1.4), it follows from Theorem (3.6) that there is
aL ∈ DetZp[GL ](C

•
FL ,S(FL ))

−1 with ΘFL ,S(FL )(aL ) = zKato
L . From the first inclusion in

Proposition (4.6) we therefore deduce that

η′L ·PFL
(zKato

L , QL ) ∈ Fitt0Zp[GFL
](H

2(D̃•FL ,S(FL ),ΠL ,QL
))#

for every QL := TrFm/FL
(Q) with Q ∈ E1(Fm,p). Setting Π′L := ΠL ∪ (S(Fmpn) \ S(FL )),

Lemma (4.4) (d) moreover gives

H2(D̃•FL ,S(FL ),ΠL ,QL
)) = H2(D̃•FL ,S(Fmpn ),Π

′
L ,QL

).

This combines with Lemma (4.9) to imply that

(1− eτ )θMT
K ∈ πFmpn/K

(∑
L⊆Z (K)

Fitt0Zp[GFL
](H

2(D̃•FL ,S(Fmpn ),Π
′
L ,QL

))#NIL

)
⊆ πFmpn/K

(∑
L⊆Z (K)

Fitt0Zp[Gmpn ]
(H2(D̃•Fmpn ,S(Fmpn ),Π

′
L ,Q))

#
)

⊆ πFmpn/K

(
Fitt0Zp[Gmpn ]

(Sel∨p,E/Fmpn
)#

)
. (41)

Here the first inclusion follows from Lemma (4.4) (b), in particular from the fact that

H2(D̃•Fmpn ,S(Fmpn ),ΠL ,Q)⊗Zp[Gmpn ] Zp[GL ] ∼= H2(D̃•FL ,S(Fmpn ),ΠL ,QL
),

by Lemma (B.13) (a), and the properties of Fitting ideals. The second inclusion follows from
Lemma (4.4) (a) and Lemma (3.8).
We next note that, since E(Fmpn) has trivial p-torsion, the natural map H1(OK,S(K), E[p∞])→
H1(OFmpn ,S(K), E[p∞]) is injective and so restricts to an injection Selp,E/K ↪→ Selp,E/Fmpn

.

Upon taking Pontryagin duals, we therefore deduce a surjection Sel∨p,E/Fmpn
↠ Sel∨p,E/K . By a

standard property of Fitting ideals, the existence of this surjection implies an inclusion

πFmpn/K(Fitt0Zp[Gmpn ]
(Sel∨p,E/Fmpn

)) = Fitt0Zp[GK ](Sel
∨
p,E/Fmpn

⊗Zp Zp[GK ])

⊆ Fitt0Zp[GK ](Sel
∨
p,E/K),

which combines with (41) to prove that θMT,#
K is contained in Fitt0Zp[GK ](Sel

∨
p,E/K) if K con-

tains no primitive p-th root of unity.
If ap ̸≡ 1 mod p and E has potentially good reduction at p, then one can again use The-
orem (3.6) and Lemma (4.9) to deduce (41), (without the factor of (1 − eτ )), and so we

conclude that θMT,#
K is contained in Fitt0Zp[GK ](Sel

∨
p,E/K).

This concludes the proof of Theorem (1.4) (b).

5. The multiplicative group

In this section we prove a number of auxiliary results that are concerned with the multiplicative
group Gm and that will be key in the proofs of Theorem (1.4) (a) and Theorem (1.7).
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5.1. A cohomological interpretation of Otsuki’s points

Fix a finite abelian extension K of Q with Galois group G := Gal(K/Q) and consider the

Gal(Q/Q)-module Zp(1)K/Q := Ind
Gal(Q/K)

Gal(Q/Q)
(Zp(1)). Upon fixing a prime number ℓ and an

embedding ιℓ : Q ↪→ Qℓ, we may regard Gal(Qℓ/Qℓ) as a subgroup of Gal(Q/Q), and hence
Zp(1)K/Q as a Gal(Qℓ/Qℓ)-module. Consequently, we have the complex

A•K,ℓ := RΓ(Qℓ,Zp(1)K/Q),

which is perfect as an object of D(Zp[G]) and acyclic outside degrees 1 and 2. Moreover, one
has canonical isomorphisms

H1(A•K,ℓ)
∼= K̂×ℓ :=

⊗
v|ℓ
K̂×v and H2(A•K,ℓ)

∼=
⊗

v|ℓ
Zpv

induced by the Kummer map and the invariant map of local class field theory, respectively.
The Euler characteristic of A•K,ℓ in K0(Zp[G]) is equal to −[Zp[G]

⊕(1−1p(ℓ))] (cf. [Fla00, § 5]),
and so Definition (B.2) provides us with a map

ϑ0K,ℓ := ϑA•
K,ℓ,∅ : DetZp[G](A

•
K,ℓ)

−1 → Qp ⊗Zp

∧1−1p(ℓ)

Zp[G]
K̂×ℓ .

Write v0 for the place of K that corresponds to the restriction of ιℓ to K. If ℓ splits completely
in K, then v0 defines a Zp[G]-basis of

⊕
v|ℓZpv and hence Definition (B.2) also gives a map

ϑK,ℓ,v0 := ϑA•
K,ℓ,{v0} : DetZp[G](A

•
K,ℓ)

−1 → Qp ⊗Zp

∧2−1p(ℓ)

Zp[G]
K̂×ℓ .

We moreover recall that, after letting L/Q denote another finite abelian extension that contains
K and setting G := Gal(L/Q), by [FK06, Prop. 1.6.5] one has an isomorphism

A•L,ℓ ⊗LZp[G] Zp[G] ∼= A•K,ℓ (42)

in D(Zp[G]) that induces a map

prL/K : DetZp[G](A
•
L,ℓ)
−1 → DetZp[G](A

•
L,ℓ)
−1 ⊗Zp[G] Zp[G] ∼= DetZp[G](A

•
K,ℓ)

−1.

If E has split-multiplicative reduction at p, Tate uniformisation induces an isomorphism F : Ê
≃→

Gm given by expGm
◦ log

Ê
(1 +X)− 1 ∈ ZpJXK (for details see, for example, [Kob06, § 3]).

(5.1) Definition. Suppose that E has split-multiplicative reduction at p. For every natural
number m coprime with p and integer n ≥ 0, we define

lmpn := F (x̃mpn) ∈ F̂×mpn,v0 ⊆ H
1(A•Fmpn ,p

)

with the element x̃mpn from Definition (2.25). (Here we have used that pEulp(σ̃p) = p− σ̃p is
invertible in Zp[G] and hence that x̃mpn belongs to E1(Fmpn,v0).)

The following is the main result of this section.

(5.2) Theorem. Fix a natural number m coprime with p and an integer n ≥ 0. For every
prime divisor ℓ of mpn at which E has split-multiplicative reduction the following claims are
valid.

(a) If ℓ ̸= p, then there exists a unique family (t
(ℓ)
mpn)n∈N ∈ lim←−n∈NDetZp[Gmpn ](A

•
Fmpn ,ℓ

)−1,

where the limit is taken with respect to the the maps prFmpn+1/Fmpn
, such that

ϑ0Fmpn ,ℓ
(t

(ℓ)
mpn) = Eulℓ(σ̃ℓ)

−1 · ν(ℓ)mpn

for all n ∈ N. If K is a subfield of Fmpn in which ℓ splits completely, then moreover

(ϑK,ℓ,v0 ◦ prFmpn/K
)(t

(ℓ)
mpn) = −ℓ−(ordℓ(m)−1)Eulℓ(1)

−1 ⊗ ℓ

as an equality in Qp ⊗Zp K̂
×
v0 = Qp ⊗Zp Q̂

×
ℓ ⊆ Qp ⊗Zp K̂

×
ℓ .
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(b) If ℓ = p, then there exists a unique family (t
(p)
mpn)n∈N ∈ lim←−n∈NDetZp[Gmpn ](AFmpn ,p)

−1

such that

ϑ0Fmpn ,p
(t

(p)
mpn) = lmpn

for all n ∈ N. If K is a subfield of Fmpn in which p splits completely, then moreover

(ϑK,p,v0 ◦ prFmpn/K
)(t

(p)
mpn) = NFm/K(lm) ∧ p ∈

∧2

Zp

K̂×v0 .

(Here the right hand side is viewed as an element of
∧2
Zp[G] K̂

×
ℓ via the isomorphism∧2

Zp[G] K̂
×
ℓ
∼= Zp[G]⊗Zp

∧2
Zp
K̂×v0.)

The proof of this result will occupy the remainder of this section.

(5.3) Remark. The element l1 ∧ p = (pEulp(1))
−1 expG(p) ∧ p is a Zp-basis of

∧2
Zp
Q̂×p and

so Theorem (5.2) (b) combines with Nakayama’s lemma to imply that t
(p)
pn is a Zp[Gpn ]-basis

of DetZp[Gpn ](A
•
Fpn ,p

)−1 for all n ≥ 0. This is perhaps reason to more generally expect a direct

relation between t
(p)
mpn and the canonical basis of DetZp[Gpn ](A

•
Fpn ,p

)−1 given by Kato’s local

ϵ-constant [Kat].

5.2. Iwasawa theory

Fix a natural number m coprime with p and define the complex

A•Fmp∞ ,ℓ := Rlim←−−
n∈N

A•Fmpn ,ℓ
,

where the limit is taken with respect to the maps induced by the relevant instances of the
isomorphisms (42). Setting Λm := lim←−n∈NZp[Gmpn ], the complex AFmp∞ is then perfect as
a complex of Λm-modules that is acyclic outside degrees 1 and 2, and one has canonical iso-
morphisms

H1(A•mp∞,ℓ)
∼= lim←−

n∈N
F̂×mpn,ℓ and H2(A•mp∞,ℓ)

∼=
⊕
v|ℓ

Zp.

In particular, since no finite prime splits completely in Fmp∞ , it follows that H2(A•mp∞,ℓ) is a
Λm-torsion module and Definition (B.2) provides us with an injective map

ϑmp∞,ℓ := ϑA•
mp∞,ℓ,∅ : DetΛm(A

•
mp∞,ℓ)

−1 ↪→ Q(Λm)⊗Λm

∧1−1p(ℓ)

Λm

H1(A•mp∞,ℓ)

where Q(Λm) is the total ring of fractions of Λm.
In the following result we write I(U) := ker{ZpJUK→ Zp} for the (p-adic) augmentation ideal
of an abelian group U , and we use the notation

⋂r
RM for the r-th ‘exterior bidual’ of an

R-module M (see §B.2 for details). In addition, we recall that for any ideal a ⊆ Λm we can
naturally regard a∗∗ as an ideal of Λm via the injective map a∗∗ → (Λm)∗∗ ∼= Λm.

(5.4) Lemma. Fix a natural number m coprime with p and write D(ℓ)
mp∞ ⊆ Gmp∞ for the

decomposition group at ℓ. Then one has

im(ϑmp∞,ℓ) =
(
AnnΛm(

⊕
v|ℓ
Zp(1))

−1 · I(D(ℓ)
mp∞)

)∗∗ ·⋂1−1p(ℓ)

Λm

H1(A•mp∞,ℓ).

Proof. Since DetΛm(A
•
mp∞,ℓ)

−1 is a free rank-one module and ϑmp∞,ℓ is injective, the image
of ϑmp∞,ℓ is reflexive and so, by the argument of [Sak23, Lem. C.11], it suffices to verify the
claimed equality after localising at an arbitrary prime ideal p ⊆ Λm of height at most one.
To do this, we first note that A•mp∞,ℓ is acyclic outside degrees 1 and 2 so that the argument
of [BS21, Prop. A.11 (i)] shows that A•mp∞,ℓ admits a representative of the form Q→ P , where
P is a finitely generated free Λm-module and Q is a finitely generated Λm-module of finite
projective dimension (that is placed in degree 1). The Auslander–Buchsbaum formula implies
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that the localisation Qp of Q at p is of projective dimension at most one, and so there is an
exact sequence 0→ F1 → F0 → Q→ 0 with finitely generated free Λm,p-modules F1 and F0. It
follows that F1 → F0 → Pp is a standard representative in the sense of Definition (B.3) (with
respect to (0,∅)) for the complex A•mp∞,ℓ ⊗LΛm

Λm,p.

To proceed, we first verify that the Matlis dual of the Λm,p-torsion submodule of H1(A•mp∞,ℓ)p

coincides with (
⊕

v|ℓZp(1))p. By Lemma (B.12) it suffices to compute Ext1Λm
(H1(A•mp∞,ℓ),Λm)p

for this. To do this, we will use the convergent spectral sequence

Ei,j
2 = ExtiΛm

(H−j(A•mp∞,ℓ),Λm) ⇒ Ei+j = H i+j(RHomΛm(A
•
Fmp∞,ℓ

,Λm)).

Since Λm,p is a Gorenstein ring of dimension one, one has that ExtiΛm
(−,Λm)p = 0 if i > 1,

and so this spectral sequence gives an isomorphism

Ext1Λm
(H1(A•mp∞,ℓ),Λm)p ∼= H0(RHomΛm(A

•
Fmp∞,ℓ

,Λm))p

∼=
(
lim←−n∈NH

2(Qℓ, (Zp)Fmpn/Q)
)
p

∼=
(⊕

v|ℓ
Zp(1)

)
p
.

Here the second isomorphism is by (derived) local Tate duality [Nek06, Thm. 5.2.6] and the
final isomorphism follows easily from (classical) local Tate duality.
If p does not contain p, then the localisation of Λm at p is a regular local ring (see, for example,
the discussion in [BKS17, § 3C1]) and hence, in this case, the claim follows from Proposi-
tion (B.10) (c) applied to the complex A•mp∞,ℓ⊗LΛm

Λm,p and the computation ofH1(A•mp∞,ℓ)
∨
tor,p

above.
Furthermore, if p contains p, then the localisation of H2(A•mp∞,ℓ) at p vanishes by the general

result of [Fla04, Lem. 5.6] because H2(A•mp∞,ℓ) is a finitely generated Zp-module. Similarly,

Ext1Λm
(H1(A•mp∞,ℓ),Λm) = Zp(1) is a finitely generated Zp-module and so also vanishes when

localised at p. It follows from Lemma (B.12) that

Ext1Λm
(H1(A•mp∞,ℓ),Λm)p = HomΛm(H

1(A•mp∞,ℓ)tor, Q(Λm)/Λm)p = 0

so that H1(A•mp∞,ℓ)p has depth 1 as a Λm,p-module. By the Auslander–Buchsbaum formula,
this implies that it is in fact a free, possibly zero, Λm,p-module. Given this, the same proof as
Proposition (B.10) (c) works and shows the claim.

Suppose that ℓ ̸= p. In this case, Lemma (2.18) shows that the family ν
(ℓ)
mp∞ := (ν

(ℓ)
mpn)n∈N

defines an element of Λm. If we can prove that Eulℓ(σ̃ℓ)
−1 · ν(ℓ)mp∞ belongs to the image of

ϑmp∞,ℓ, then it follows from the diagram

DetΛm(A
•
mp∞,ℓ)

−1 (
AnnΛm(

⊕
v|ℓZp(1))

−1 · I(D(ℓ)
mp∞)

)∗∗
DetZp[Gmpn ](AFmpn ,ℓ) Qp[Gmpn ],

ϑmp∞,ℓ

prFmp∞/Fmpn
πFmp∞/Fmpnϑ0

Fmpn,ℓ

(43)

which commutes for every n ∈ N as can be checked using the explicit description of the maps
ϑmp∞,ℓ and ϑ

0
Fmpn ,ℓ

given in Lemma (B.5), that the first claim in Theorem (5.2) (a) is valid.

To prove that Eulℓ(σ̃ℓ)
−1 · ν(ℓ)mp∞ is indeed in the image of ϑmp∞,ℓ, [Sak23, Lem. C.11] allows us

to check the claimed containment locally at a height-one prime p of Λm. To do this, let us first
assume that p contains p. In this case, then, Lemma (5.4) combines with [Fla04, Lem. 5.6] to

imply that (imϑmp∞,ℓ)p = Λm,p. It therefore suffices to prove that Eulℓ(σ̃ℓ)
−1 · ν(ℓ)mp∞ belongs

to Λm,p and this will follow if we can show that Eulℓ(σ̃ℓ) = ℓ−1(ℓ − σ̃ℓ) is a unit in Λm,p. Fix
a decomposition Gmp∞

∼= ∆ × Γ with a finite group ∆ and Γ := Gal(Q(ζmp∞)/Q(ζmp)), and
write ∆(p) for the p-Sylow subgroup of ∆. The discussion in [BKS17, § 3C1] then implies that

there exists a prime-to-p-order character χp : ∆→ Qp
×
such that Λm,p naturally identifies with

the localisation of Zp[imχp][∆
(p)]JΓK at the prime ideal (p, IZp[imχp],∆(p)). Since ℓ−χp(σ̃ℓ)σℓ is
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not divisible by p in Λ[imχp]JΓK, we conclude that Eulℓ(σ̃ℓ) is a unit in Λm,p, as claimed.
We next assume p ⊆ Λm is a height-one prime that does not contain p. By [BKS17, § 3C1]
one then has that there exists a character χp : ∆ → Qp

×
such that Λm,p identifies with the

localisation of Zp[imχp] at one of its height-one primes, and [BB25, Lem. 8.23 (i)] moreover
shows that

AnnΛm

(⊕
v|ℓ
Zp(1)

)
p
=

{
Eulℓ(σℓ)Λm,p if χp(I(ℓ)mp∞) = 1,

Λm,p if χp(I(ℓ)mp∞) ̸= 1.

Recall from Theorem (2.10) (e) that the element Eulℓ(σ̃ℓ)
−1ν

(ℓ)
mp∞ belongs to the submodule

Λm + Eulℓ(σℓ)
−1NI(ℓ)mp∞

Λm of Q(Λm), and hence also to AnnΛm(Zp(1))
−1
p . In addition, we

know from Theorem (2.10) (d) that ν
(ℓ)
mp∞ is contained in ID(ℓ)

mp∞
= Λm ·I(D(ℓ)

mp∞). However, one

can explicitly check that the supports of Λm/ID(ℓ)
mp∞

and Λm/AnnΛm(
⊕

v|ℓZp(1)) are disjoint.

Indeed, if p is in the support of Λm/ID(ℓ)
mp∞

, then p = ker{Λm → Zp[Gmp∞/D(ℓ)
mp∞ ]

χ→ Qp(χ)}
for some character χ. Since χ(σℓ)− ℓ ̸= 1, we see that AnnΛm(

⊕
v|ℓZp(1)) contains an element

that is a unit in Λm,p, as required to prove the claim. We have thereby proved that

Eulℓ(σ̃ℓ)
−1ν

(ℓ)
mp∞ ∈

(
AnnΛm(

⊕
v|ℓ
Zp(1))

−1 ∩ ID(ℓ)
mp∞

)
p

=
(
AnnΛm(

⊕
v|ℓ
Zp(1))

−1 · ID(ℓ)
mp∞

)
p

for every height-one prime ideal p of Λm that does not contain p. Together with the earlier argu-

ment for primes p that contain p, this shows that Eulℓ(σ̃ℓ)
−1ν

(ℓ)
mp∞ is in (AnnΛm(

⊕
v|ℓZp(1))

−1 ·
I(D(ℓ)

mp∞))∗∗, and hence in im(ϑmp∞,ℓ) by Lemma (5.4). This proves the first claim in Theorem
(5.2) (a).
Let us now turn to the the case ℓ = p and the proof of the first claim in Theorem (5.2) (b).
By construction, the elements lmpn belong to the (1− eτ )-isotypic component of H1(A•Fmpn ,p

)
which, in particular, is torsion free. Since p is assumed to be a split-multiplicative prime,
Theorem (2.10) (c) (i) moreover shows that lmp∞ := (lmpn)n∈N is a norm-coherent family
with trivial bottom value. By the argument of [BD21, Thm. 3.8 (b)], applied to the com-
plex C•Fmp∞,p

⊗LΛm
(1 − eτ )Λm, this implies that lmp∞ is in I∗∗

D(ℓ)
mp∞

· (1 − eτ )H1(A•mp∞,p). We

therefore deduce from Lemma (5.4) that lmp∞ belongs to (1− eτ ) im(ϑmp∞,p). Now, one has a
commutative diagram comparing ϑmp∞,p and ϑmpn,p as in (43), and so it follows that lmpn is
in the image of ϑmpn,p for all n ∈ N, as claimed in Theorem (5.2) (b).
This proves the first two claims in parts (a) and (b) of Theorem (5.2).

5.3. Descent calculations

To prove the remaining claims of Theorem (5.2), we will perform descent calculations similar to
those in [BKS17, § 5]. In doing so we will, in particular, prove local analogues of the ‘Mazur–
Rubin–Sano’ conjecture from [BKS17]. We remark that, as our setting is entirely local, we
do not need to assume the validity of ‘global-to-local’ hypotheses used in [BKS17] such as the
conjectures of Leopoldt or Gross–Kuz’min.
Let L be a finite abelian extension of Q and K a subfield of L in which a prime ℓ splits
completely. We also fix a place w0 of L above v0. Setting G := Gal(L/Q), H := Gal(L/K),
and IH := I(H) ·Zp[G], we then write

β
(ℓ)
L/K : H1(A•K,ℓ)

∼= H1(A•L,ℓ ⊗LZp[G] Zp[G])
βA•

K,ℓ
,IH

−−−−−−→ H2(A•L,ℓ)⊗Zp[G] IH
w∗

0−−→ IH/I(D
(ℓ)
L )IH

for the relevant instance of the Bockstein map from Definition (B.16). This map has the
following explicit description.
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(5.5) Lemma. Suppose ℓ splits completely in K. For every a = (av)v|ℓ ∈
⊕

v|ℓ K̂
×
v = H1(A•K,ℓ)

one then has

β
(ℓ)
L/K(a) =

∑
σ∈GK

(recℓ(aσv0)− 1)σ̃−1 ∈ IH/I(D(ℓ)
L )IH

with the local reciprocity map recℓ : Qℓ → Gal(Qab
ℓ /Qℓ) ↠ D

(ℓ)
L ⊆ H and a choice of lift σ̃ ∈ G

of σ ∈ G.

Proof. See [Bur07, Lem. 10.3] or [BKS16, Lem. 5.21].

Throughout the remainder of this section let K∞ denote the cyclotomic Zp-extension of K
and, for every n ∈ N, write Kn for its n-th layer. We will write Γ := Gal(K∞/K) and
Γn := Gal(Kn/K) for the relevant Galois groups. If Kn has conductor mpn+t for some t ≥ 0,
we define

t
(p)
Kn

:= prFmpn+t/K
(t

(p)
mpn+t).

As the remaining calculations are subtantially different according to whether the prime ℓ is
equal to p or not, we now consider these two cases separately.

5.3.1. The case ℓ ̸= p

Let us first assume that ℓ ̸= p. By enlarging K is necessary, we may assume that the decom-

position group D
(ℓ)
Kn

of ℓ in Kn/Q is equal to Γn for all n ∈ N. In particular, β
(ℓ)
Kn/K

defines a

map H1(A•Kn,ℓ
)→ IΓn/I

2
Γn
. In order to apply Proposition (B.17) (c) in this situation, we need

to verify that pdZp[GKn ]
((K̂×n,ℓ)tor) ≤ 1 and pdZp

((K̂×ℓ )tor) ≤ 1. (This will also verify condition
(85) by Remark (B.15).) The second inequality is clear because Zp is a discrete valuation
ring, and for the first inequality it is sufficient to prove that (K×n,v0)tor is Γn-cohomologically
trivial. The required cohomological triviality is however true because the extension Kn,v0/Qℓ

is unramified (cf. [NSW08, Prop 9.1.4]).
Proposition (B.17) (c) now shows that

(β
(ℓ)
Kn/K

◦ ϑK,ℓ,v0 ◦ prKn/K)(t
(ℓ)
mpn) ≡ ϑ0Kn,ℓ(t

(ℓ)
Kn

) mod I2Γn
(44)

as an equality in AnnZp((Q
×
ℓ )tor)

−1 ⊗Zp (IΓn/I
2
Γn
). The right hand side of this congruence we

can compute, using Theorem (2.10) (d), to be

ϑ0Kn,ℓ(t
(ℓ)
Kn

) = πFmpn+t/Kn
(Eulℓ(σ̃ℓ)

−1ν
(ℓ)
mpn+t)

≡ ℓ(ℓ− 1)−1 ⊗ ℓ−(ordℓ(m)−1)(1− σ̃ℓ) mod I2Γn
. (45)

(Note that AnnZp((Q
×
ℓ )tor)

−1 is generated by (ℓ− 1)−1.) Combining (44) and (45) we obtain

(β
(ℓ)
Kn/K

◦ ϑK,ℓ,v0 ◦ prKn/K)(t
(ℓ)
mpn) ≡ ℓ(ℓ− 1)−1 ⊗ ℓ−(ordℓ(m)−1)(1− σ̃ℓ) mod I2Γn

, (46)

which, by using the isomorphism

IΓn/I
2
Γn
∼= Zp[G]⊗Zp (I(Γn)/I(Γn)

2),

we can regard as an equality in (ℓ− 1)−1Zp[G]⊗Zp (I(Γn)/I(Γn)
2). By taking the limit of the

maps β
(ℓ)
Kn/K

we may define a limit map

H1(A•K,ℓ)→ Zp[G]⊗Zp

(
lim←−n∈N(I(Γn)/I(Γn)

2)
) ∼= Zp[G]⊗Zp Γ,

where the isomorphism is induced by sending (g− 1) 7→ g for every g ∈ Γ. Passing to the limit
(over n) in (46), we then obtain

(β
(ℓ)
K∞/K ◦ ϑK,ℓ,v0 ◦ prK∞/K)(t

(ℓ)
K∞

) = ℓ(ℓ− 1)−1 ⊗ ℓ−(ordℓ(m)−1)(1− σ̃ℓ)

= −ℓ(ℓ− 1)−1 ⊗ ℓ−(ordℓ(m)−1)(σ̃ℓ − 1) (47)
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in (ℓ− 1)−1Zp[G]⊗Zp Γ. Since ℓ is unramified in K∞/K, the composite map

K̂×v0
recℓ−−→ Zp ⊗Zp Γ

σℓ 7→1∼= Zp

agrees with ordℓ. This map restricts to an isomorphism on the torsion-free quotient of K̂×v0 ,
and so Lemma (5.5) combines with (47) to imply that

(ϑK,ℓ,v0 ◦ prK∞/K)(t
(ℓ)
K∞

) = −ℓ− ordℓ(m)+1(1− ℓ−1)−1 ⊗ ℓ,
as required to conclude the proof of Theorem (5.2) (a).

5.3.2. The case ℓ = p

In the remainder of this section we consider the case ℓ = p. It then suffices to prove that

(ϑK,p,v0 ◦ prKn/K)(t
(p)
Kn

) = NFm/K(lm) ∧ p.
As a first step in this direction, we combine Proposition (B.17) (c) with the argument of [BKS16,
Thm. 5.10] to deduce that∑

σ∈Γn

σϑ0Kn,p(t
(p)
Kn

)⊗ σ−1 = −(β(p)Kn/K
◦ ϑK,p,v0 ◦ prKn/K)(t

(p)
Kn

) (48)

in K̂×n,p ⊗Zp[GKn ]
(IΓn/I

2
Γn
) with Γn := Gal(Kn/K).

Recall that for any norm-coherent sequence u = (un)n≥0 ∈ lim←−n≥0(Zp⊗ZOFmpn
)× there exists

a unique power series Col(X) ∈ (Zp⊗ZOFm)JXK×, called its ‘Coleman power series’, with the
property that

(σ−np Col)(ζpn − 1) = un for all n ≥ 1.

(See [Sha95, Ch. I] for details.)
In the following, we will use the maps

Ordp :
⊕

v|p
K̂×v → Zp[G], a 7→

∑
σ∈G

ordp(aσv0)σ
−1,

Recp,Kn/K :
⊕

v|p
K̂×v → IΓn/I

2
Γn
, a 7→

∑
σ∈G

(recℓ(aσv0)− 1)σ̃−1,

and the induced isomorphisms

Ordp :
∧2

Zp[G]
K̂×p

≃→ Ô×K,p and Recp,Kn/K :
∧2

Zp[G]
K̂×p

≃→ pZp[G].

(5.6) Lemma. Suppose u = (un)n≥0 ∈ lim←−n≥0(Zp ⊗Z OFmpn
)× is a norm-coherent sequence

with NFm/K(u0) = 1 and Col(0) ∈ (Zp ⊗Z OFm)
×. For big enough n, one then has∑

σ∈Γn

σNFmpn/Kn
(un)⊗ σ−1 = (Recp,Kn/K ◦Ord−1p )(NFm/K(Col(0)))

in K̂×n,p ⊗Zp[GKn ]
(IΓn/I

2
Γn
).

Proof. This follows from the main result of Bley and Hofer in [BH20] via the argument of
[BH23, Thm. 5.1]. For the convenience of the reader, we sketch this argument.
Observe that K× contains no primitive p-th root of unity because p is assumed to split com-

pletely in K, and hence that also each K̂×n is Zp-torsion free by the general result of [NSW08,
Prop. 1.6.12]. If we fix a topological generator γ of Γ, then we may therefore use the argu-
ment of [BD21, Thm. 3.8 (b)], applied to the complex A•K∞,p, to deduce from the assumption

NFm/K(u0) = 1 that the sequence u′ := (NFmpn/Kn
(un))n∈N is divisible by γ−1 in lim←−n∈N K̂

×
n,p.

Writing κ = (κn)n≥0 for the unique element of lim←−n≥0 K̂
×
n,p such that u′ = (γ − 1)κ, one then

has ∑
σ∈Γn

σNFmpn/Kn
(un)⊗ σ−1 = κ0 ⊗ (γ − 1)
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by [BH23, Lem. 3.14]. To proceed, define the characters sγ : Γ → Zp, γ
a 7→ a and sγ,n : Γn →

Z/pnZ, γa 7→ a mod pn. Applying [BH20, Cor. 3.17] (see also [BH23, Prop. 5.2]) to the

character ργ,n : Gmp∞ → Γ
sγ,n−−→ Z/pnZ, we obtain the equality

ordKn(κn)

pn
= −

(sγ,n ◦ recp ◦NFm/K)(Col(0)))

pn
in

⊕
v|p

(Q/Z).

Now, ordKn(κn) = ordK(κ0) because Kn/K is totally ramified at p, and so taking the limit
(over n) shows that

ordp(κ0) = −(sγ ◦ recp ◦NFm/K)(Col(0))) in
⊕

v|p
Zp.

In addition, local class field theory implies that the group of universal norms
⋂

n∈NNKn/K(K̂×n )

is equal to
⊕

v|p p
Zp , on which Ordp is injective. Since κ0 clearly belongs to this group and the

same is true for the image of the isomorphism
∧2
Zp[G] K̂

×
p
≃−→ pZp[GK ] induced by Recp,Kn/K

(cf. the general result of [BB25, Lem. 2.17 (ii)]), the last displayed equality in fact implies that

κ0⊗(γ−1) = −(Ord−1p ◦Recp,Kn/K)(NFm/K)(Col(0))) = (Recp,Kn/K ◦Ord−1p )(NFm/K(Col(0))),

as claimed.

Write Col(X) ∈ ZpJXK for the Coleman power series associated to the norm-coherent sequence
(lmpn)n. Then Lemma (5.6) combines with (48) and Lemma (5.5) to imply that

(Recp,Kn/K ◦Ord−1p )(NFm/K(Col(0))) =
∑

σ∈Γn

σϑ0Kn,p(t
(p)
Kn

)⊗ σ−1

= −(Recp,Kn/K ◦ ϑK,p,v0 ◦ prKn/K)(t
(p)
Kn

)

in K̂×n,p ⊗Zp[GKn ]
(IΓn/I

2
Γn
). Note that the outer terms in this equality belong to the image

of K̂× ⊗Zp[GKn ]
(IΓn/I

2
Γn
) ∼= K̂× ⊗Zp (I(Γn)/I(Γn)

2) so that we can regard this as where the
equality takes places. Taking the limit over n, the map Recp,Kn/K defines an isomorphism∧2
Zp[G] K̂

×
p
≃→ pZp[G] ⊗Zp (I(Γ)/I(Γ)

2) so that from the last displayed equality we can deduce
that

Ord−1p (NFm/K(Col(0))) = −(ϑK,p,v0 ◦ prKn/K)(t
(p)
Kn

).

Now, by definition of x̃mpn (Definition (2.25)) one has

Col(X) = expGm
◦ log

Ê
◦
( ∑
m0|d|m

(
(
∑
χ̸=τ

hχ,d(X)−
Ê
X) +

Ê
(pEulp(σp))

−1ϵd
))

=
∑

m0|d|m

(
(
∑
χ̸=τ

(expGm
◦gχ,d(X))−Gm (expGm

◦ log
Ê
)(X))

+Gm (pEulp(σp))
−1 expGm

(ζdp)
)

and so we deduce that

Col(0) = (pEulp(σp))
−1 expGm

(∑
m0|d|m

ζdp
)
= lm.

The claim now follows from the equality Ordp(NFm/K(lm)∧p) = −NFm/K(lm) because the map

Ordp :
∧2
Zp[G] K̂

×
p → (Zp ⊗Z OK)× is an isomorphism.

This concludes the proof of Theorem (5.2).

6. Neková̌r–Selmer complexes and exceptional zeros

In this section we establish Theorems (1.4) (a) and (1.7). The proofs involve an auxiliary
Nekovář–Selmer structure, introduced in § 6.1.1 and studied further in § 6.1.2, where we de-
scribe the associated Nekovář–Selmer complexes and their cohomology. After some preliminary
constructions of § 6.1.3 concerning the determinants of these complexes, we first prove The-
orem (1.4) (a) in § 6.2 before turning to the proof of Theorem (1.7) in § 6.3.
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6.1. Consequences of Tate uniformisation

If E has split-multiplicative reduction at the prime ℓ, then Tate uniformisation gives rise to an
exact sequence (cf. [Sil94, Prop. 6.1])

0 Zp(1) TpE Zp 0 (49)

of Gal(Qℓ/Qℓ)-modules, which induces an exact triangle

RΓ(Qℓ,Zp(1)K/Q)
gℓ−→ RΓ(Qℓ, (TpE)K/Q)

hℓ−→ RΓ(Qℓ,Zp,K/Q)→ RΓ(Qℓ,Zp(1)K/Q)[1]. (50)

(6.1) Remark. For later use we note that the connecting homomorphism Zp → H1(Qℓ,Zp(1))
arising from the exact sequence (49) sends 1 to the image of the ℓ-adic Tate period qE,ℓ of E

under the Kummer map Q̂×ℓ
≃−→ H1(Qℓ,Zp(1)).

6.1.1. Definition of a useful Neková̌r–Selmer structure

We now use the triangle (50) to define a useful Nekovář–Selmer structure. To do this, we fix
Q ∈ E1(Kp) and a finite set Π of primes at which E has split-multiplicative reduction. Write
Πram and Πunr for the subsets of Π (resp. of Π \ {p}) comprising primes which are ramified
and unramified in K, respectively. We further let Σ be a finite set of places of Q that contains
S(K).
We define a Selmer structure F sp

Σ,Π,Q with S(F sp
Σ,Π,Q) = Σ as follows.

• If v ∈ Πram, then we let RΓFsp
Σ,Π,Q

(Qv, TK/Q) := RΓ(Qv,Zp(1)K/Q) and take iFsp
Σ,Π,v to be

the map gv from (50).

• If v ∈ Πunr, then we we define RΓFsp
Σ,Π,Q

(Qv, TK/Q) and iFsp
Σ,Π,v by means of the triangle

RΓFsp
Σ,Π,Q

(Qv, TK/Q)
iFsp

Σ,Π
,v

−−−−→ RΓ(Qv, TK/Q)→ RHomZp(RΓ(Fv,Zp(1)),Zp)[−2]→ .

Here the last arrow is the map

RΓ(Qv, TK/Q)
hv−→ RΓ(Qv,Zp,K/Q)
≃−→ RHomZp(RΓ(Qv,Zp(1)K/Q),Zp)[−2]
−→ RHomZp(RΓ(Fv,Zp(1)K/Q),Zp)[−2],

defined as the composite of the map hv from (50), the canonical isomorphism induced by
local Tate duality, and the inflation map RΓ(Fv,Zp(1)K/Q)→ RΓ(Qv,Zp(1)K/Q).

• If v = p is unramified in K, then we define RΓFsp
Σ,Π,Q

(Qv, TK/Q) and iFsp
Σ,Π,v by the triangle

RΓFsp
Σ,Π,Q

(Qv, TK/Q)
iFsp

Σ,Π
,v

−−−−→ RΓ(Qv, TK/Q)→ RHomZp(D
•
p,Q,Zp)[−2]→ ,

where D•p,Q is the complex defined in Lemma (4.2) (b) and the second arrow is the
composite of the natural map RΓ(Qv, TK/Q) → RΓ/f (Qv, TK/Q) and the map ρ∗p,Q :=
RHomZp(ρp,Q,Zp)[−2] dual to the morphism ρp,Q from Lemma (4.2) (b).

• If v = p is ramified in K and does not belong to Π, then we define RΓFsp
Σ,Π,Q

(Qv, TK/Q)

and iFsp
Σ,Π,v by means of the triangle

RΓFsp
Σ,Π,Q

(Qv, TK/Q) RΓ(Qv, TK/Q) Zp[G][−1] RΓFsp
Σ,Π,Q

(Qv, TK/Q)[1].
iFsp

Σ,Π
,v

Here the second arrow is induced by PK(·, Q) (equivalently, the composite of the natural
morphism RΓ(Qv, TK/Q) → RΓ/f (Qv, TK/Q) with the dual of the map Zp[G][−1] →
RΓf (Qv, TK/Q) that sends 1 to Q).
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• In all other cases we take RΓFsp
Σ,Π,Q

(Qv, TK/Q) := RΓ(Qv, TK/Q) and iFsp
Σ,Π,v to be the

identity map.

(6.2) Lemma. Let (Σ,Π, Q) be as above. For every place v of Q, the complex RΓFsp
Σ,Π,Q

(Qv, TK/Q)

is perfect in D(Zp[G]) and acyclic outside degrees one and two.

Proof. In all cases perfectness is a consequence of the definitions and the general result of
Flach [Fla00, § 5]. The claim regarding acyclicity is clear in all cases apart from when v = p
is unramified in K. To justify the claim in this remaining case, we write ρ for the composite
of the map ρp,Q and the map RΓf (Qp, TK/Q) → RΓ(Qp, TK/Q). By definition of F sp

Σ,Π,Q, one
then has RΓFsp

Σ,Π,Q
(Qv, TK/Q) ∼= RHomZp(cone(ρ),Zp)[−2] and this isomorphism gives rise to

a convergent spectral sequence

Ei,j
2 = ExtiZp

(H−j(cone(ρ)),Zp) ⇒ Ei+j = H i+j+2
Fsp

Σ,Π,Q
(Qp, TK/Q).

Since ExtiZp
(−,Zp) = 0 if i ̸∈ {0, 1}, this spectral sequence reduces us to proving that

(i) H i(cone(ρ)) = 0 if i ̸∈ {0, 1, 2},
(ii) H2(cone(ρ)) is Zp-torsion,

(iii) H0(cone(ρ)) is Zp-torsion free.

By its definition, the complex D•p,Q = Zp[G][−1] ⊕ D•p is acyclic outside degree one and so
claim (i) follows from the long exact sequence in cohomology induced by the defining tri-
angle for cone(ρ). Moreover, this long exact sequence gives an isomorphism H2(cone(ρ)) ∼=
H2(Qp, TK/Q) and hence proves (ii) because H2(Qp, TK/Q) ∼=

⊕
v|p(E(Kv)tor⊗Z Zp)

∨ is finite.

To prove claim (iii), we recall that the mapH1(ρ) is defined to be the composite ofH1(ρp,Q) and
the Kummer map E(Kp) ↪→ H1(Qp, TK/Q). Now, by definition of ρp,Q one has a commutative
diagram

0 Zp[G] H1(D•p,Q) H1(D•p) 0

0 E1(Kp) E(Kp) (E/E1)(Kp) 0

17→Q H1(ρp,Q)

in which the the rightmost vertical arrow is an isomorphism by Lemma (4.1) because p is
assumed to be unramified in K. The snake lemma therefore implies that H0(cone(ρ)) =
kerH1(ρp,Q) identifies with an ideal of Zp[G], and hence that it is Zp-torsion free, as required
to verify (iii).

6.1.2. A computation of Neková̌r–Selmer groups

The cohomology of the Nekovář–Selmer complex associated to F sp
Σ,Π,Q has the following im-

portant properties.

(6.3) Lemma. For every triple (Σ,Π, Q) as in § 6.1.1 the following claims are valid.

(a) One has rkZp(H
1
Fsp

Σ,Π,Q
(K,TpE)G) ≥ |Πram|+ rkZp(Sel

∨
p,E/Q).

(b) If E(K)[p] = 0, then there is a surjection

H2
Fsp

Σ,Π,Q
(K,TpE) ↠

⊕
ℓ∈Πram

H2(Qℓ,Zp(1)K/Q) ∼= YK,Πram
:=

⊕
v|ℓ

⊕
ℓ∈Πram

Zpv.

(c) If E(K)[p] = 0, then H1
Fsp

Σ,Π,Q
(K,TpE) is Zp-torsion free.

Proof. To prove claim (a), we will show that dimQp(Qp ⊗Zp H
1
Fsp

Σ,Π,Q
(K,TpE)G) is at least

|Πram| + dimQp H
2
f (Q,VpE). To do this, we set F := F sp

Σ,Π,Q, write H
1
h(F)(Qp, TK/Q) for the

image of H1(RΓF (Qp, TK/Q)) in H
1(Qp, TK/Q), and define H1

/h(F)(Qp, TK/Q) to be the quotient
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of H1(Qp, TK/Q) by H
1
h(F)(Qp, TK/Q).

Note that H1(Qℓ, TK/Q) is finite for every ℓ ̸= p, and hence that the relevant instance of the
triangle in Remark (3.2) gives the exact sequence

Qp ⊗Zp YK,Πram ↪→ Qp ⊗Zp H
1
Fsp

Σ,Π,Q
(K,TpE)→ H1(OK,Σ,VpE)→ Qp ⊗Zp H

1
/h(F)(Qp, TK/Q).

(51)
If we can prove that H1

h(F)(Qp, TK/Q) contains H
1
f (Qp, TK/Q), then exactness of (51) will show

that the image of the second arrow in (51) contains H1
f (K,VpE). Since H1

f (K,VpE)G ∼=
H1

f (Q,VpE) has the same Qp-dimension as H2
f (Q,VpE) by duality (cf. [BF01, Lem. 19]),

taking G-invariants will then imply claim (a).
If p ∈ Πram, then we have defined H1

h(F)(Qp, TK/Q) to be the kernel of the map H1(hp) induced

by hp. From the long exact sequence associated with the triangle (50) we deduce that the
kernel of H1(hp) is the image of H1(gp). Now, one has a commutative diagram⊕

v|p K̂
×
v

⊕
v|pE(Kv)

∧

H1(Qp,Zp(1)K/Q) H1(Qp, TK/Q),

≃ κ
H1(gp)

where the vertical arrows are the respective Kummer maps and the top arrow is induced by
Tate uniformisation. This shows that H1

h(F)(Qp, TK/Q) = H1
f (Qp, TK/Q) in this case, as desired.

If p ̸∈ Πram, then Qp⊗ZpH
1
h(F)(Qp, TK/Q) is by definition the orthogonal complement of Qp[G] ·

Q with respect to local Tate duality. Since Q was chosen to be an element of H1
f (Qp, VK/Q),

which is its own orthogonal complement, it follows that Qp ⊗Zp H
1
h(F)(Qp, TK/Q) contains

H1
f (Qp, VK/Q). This concludes the proof of claim (a).

As for claim (b), by definition of the Nekovář–Selmer structure F sp
Σ,Π,Q and the octahedral

axiom we have an exact triangle

RΓc(OK,Σ,TpE)→ RΓFsp
Σ,Π,Q

(K,TpE)→
⊕

ℓ∈Σ
RΓFsp

Σ,Π,Q
(Qℓ, TK/Q)→,

which, since H3
c (OK,Σ,TpE) ∼= (Zp ⊗Z E(K)tor)

∨ is assumed to vanish, induces a surjection

H2
Fsp

Σ,Π,Q
(K,TpE) ↠

⊕
ℓ∈Σ

H2
Fsp

Σ,Π,Q
(Qℓ, TK/Q) ↠

⊕
ℓ∈Πram

H2(Qℓ,Zp(1)K/Q),

as claimed. Finally, claim (c) follows from the exact sequence (obtained from the relevant
instance of the triangle in Remark (3.2))

0→
⊕

v∈Πram

Zpv → H1
Fsp

Σ,Π,Q
(K,TpE)→ H1(OK,Σ,TpE)

and the fact that H1(OK,Σ,TpE) is Zp-torsion free if E(K) has no point of order p.

We now write (F sp
Σ,Π,Q)

∗ for the dual Nekovář–Selmer structure of F sp
Σ,Π,Q (as defined in Re-

mark (3.4)) and define a complex as

SC•K,Σ,Π,Q := RHomZp(RΓ(Fsp
Σ,Π,Q)∗(K,TpE),Zp)[−3].

This complex is described in a little more detail in the following result which is an analogue of
Lemma (3.5).

(6.4) Lemma. For every triple (Σ,Π, Q) as in § 6.1.1 the following claims are valid.

(a) SC•K,Σ,Π,Q is a perfect object of D(Zp[G]) with Euler characteristic

χZp[G](SC
•
K,Σ,Π,Q) = [Zp[G]].

(b) There is a canonical isomorphism H1(SC•K,Σ,Π,Q)
∼= H1

Fsp
Σ,Π,Q

(K,TpE). If E(K)[p] = 0,

then there is also a split-exact sequence of Zp[G]-modules

0 H2
Fsp

Σ,Π,Q
(K,TpE) H2(SC•K,Σ,Π,Q) T+

K/Q 0, (52)
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and SC•K,Σ,Π,Q is acyclic outside of degrees zero and one.

(c) In D(Zp[G]) there is an exact triangle

SC•K,Σ,Π,Q → C•K,Σ →
⊕

v∈Σ
RΓ/Fsp

Σ,Π,Q
(Qv, TK/Q)→ SC•K,Σ,Π,Q[1]. (53)

Proof. The triangle (53) in claim (c) is obtained by dualising the triangle

RΓc(OK,Σ,TpE)→ RΓ(Fsp
Σ,Π,Q)∗(K,TpE)→

⊕
v∈Σ

RΓ(Fsp
Σ,Π,Q)∗(Qv, TK/Q)→ (54)

that exists by the definition of F sp
Σ,Π,Q and the octahedral axiom. As a consequence of (53),

we deduce that SC•K,Σ,Π,Q is perfect and has Euler characteristic −[Zp[G]]. This is because
the complex C•K,Σ is perfect with vanishing Euler characteristic (cf. Lemma (3.5) (a)) and each
complex

⊕
v∈ΣRΓ/Fsp

Σ,Π,Q
(Qv, TK/Q) is by construction perfect and has vanishing Euler charac-

teristic if v ̸= p resp. Euler characteristic [Zp[G]] if v = p (as follows from the computations of
Euler characteristics in [Fla00]). Having thereby proved claim (a), we now turn to claim (b).
Firstly, Artin–Verdier induces a canonical exact triangle

RΓFsp
Σ,Π,Q

(K,TpE)→ SC•K,Σ,Π,Q → (TK/Q)
+[−2]→, (55)

and this directly implies the first part of claim (b). Assuming now that E(K)[p] = 0, the
isomorphismH3

c (OK,Σ,TpE) ∼= (E(K)tor⊗ZZp)
∨ shows that RΓc(OK,Σ,TpE) is acyclic outside

degree one and two. From the triangle for F sp
Σ,Π,Q analogous to (54) and Remark (6.2) we

therefore see that RΓFsp
Σ,Π,Q

(K,TpE) is acyclic outside degrees one and two. Given this, the

triangle (55) implies both that SC•K,Σ,Π,Q is acyclic outside degree one and two and that one
has the exact sequence (52), which is split-exact because (TK/Q)

+ is a free Zp[G]-module. This
concludes the proof of claim (b).

6.1.3. Determinants and passage to cohomology

Let (Σ,Π, Q) as in § 6.1.1 and recall the basis bK of T+
K/Q defined in § 3.2. In light of

Lemma (6.4), Definition (B.2) provides us with a map

FK,Σ,Π,Q := ϑSC•
K,Σ,Π,Q,{b∗K} : DetZp[G](SC

•
K,Σ,Π,Q)

−1 → Qp[G].

We next define a composite isomorphism fK,Σ,Π,Q as

DetZp[G](C
•
K,Σ)

−1 ≃−→ DetZp[G](SC
•
K,Σ,Π,Q)

−1 ⊗Zp[G]

⊗
ℓ∈Π∪{p}

DetZp[G](RΓ/Fsp
Σ,Π,Q

(Qℓ, TK/Q))
−1

≃−→ DetZp[G](SC
•
K,Σ,Π,Q)

−1,

where the first arrow is the isomorphism induced by the triangle (53) and the second arrow is
id⊗ (⊗ℓ∈Π∪{p}Evxℓ

) with xℓ defined as follows.

• For any prime number ℓ ∈ Π \ (Πram ∪ {p}, the complex RΓ(Fℓ,Zp(1)K/Q) can be rep-
resented by

Zp[G]
·(1−ℓ−1σℓ)−−−−−−−→ Zp[G].

Wemay therefore define a canonical element sℓ := idZp[G]⊗1 of DetZp[G](RΓ(Fℓ,Zp(1)K/Q))
−1

that satisfies ϑRΓ(Fℓ,Zp(1)K/Q),∅(sℓ) = 1 − ℓ−1σℓ = Eulℓ(σℓ). Given this, we define xℓ as
the image of sℓ under the isomorphism

DetZp[G](RΓ/Fsp
Σ,Π,Q

(Qℓ, TK/Q)) = DetZp[G](RHomZp(RΓ(Fℓ,Zp(1)K/Q),Zp)[−2])
∼= DetZp[G](RΓ(Fℓ,Zp(1)K/Q))

−1,#

that is induced by the isomorphism (3).

48



• If ℓ ∈ Πram, then we we use the element t
(ℓ)
K from Theorem (5.2) to define xℓ as the image

of (−1)1ℓ(p) · t(ℓ)K under the isomorphism

DetZp[G](RΓ/Fsp
Σ,Π,Q

(Qℓ, TK/Q)) ∼= DetZp[G](RΓ(Qℓ,Zp,K/Q))

∼= DetZp[G](RΓ(Qℓ,Zp(1)K/Q)
−1,#.

Here the first isomorphism is induced by the triangle (50) and the second isomorphism
by local Tate duality (24) and the isomorphism (3).

• If p is ramified in K but not in Π, then we take xp to be the element corresponding to
idZp[G] in DetZp[G](RΓ/Fsp

Σ,Π,Q
(Qℓ, TK/Q)) ∼= DetZp[G](Zp[G][−1]) ∼= Zp[G]

∗.

• If p is unramified in K, then we let xp be the unique element of

DetZp[G](RΓ/Fsp
Σ,Π,Q

(Qℓ, TK/Q)) ∼= DetZp[G](RHomZp(D
•
p,Q,Zp)[−2]) ∼= DetZp[G](F

•
p,Q)

−1,#

with ϑD•
p,Q,{idZp[G]}(x

#
p ) = pEulp(σp) (which exists by Lemma (4.2) (a) (iii)).

The following result gives an explicit description of the map FK,Σ,Π,Q ◦ fK,Σ,Π,Q.

(6.5) Lemma. Let K be a finite abelian extension of Q of conductor mpn with m ∈ N coprime
to p and n ≥ 0. For every a ∈ DetZp[G](C

•
K,Σ)

−1 one has the following equality in Qp[G].

(FK,Σ,Π,Q ◦ fK,Σ,Π,Q)(a) = (
∏

ℓ∈Πram

ν
(ℓ)
mpn)

# ·
(∏

ℓ∈Π\{p}
Eulℓ(σ̃

−1
ℓ )

)−1
· (pEulp(σ−1p ))−1pn (p) · PK(ΘK,Σ(a), Q). (56)

Proof. In the case that p ̸∈ Πram, this is a consequence of Proposition (B.7) (a). In the case
that p ∈ Πram we note that 1 − e1 acts as the identity on both sides of the claimed equality,
and hence that we may verify this equality over (1− e1)Qp[G]. Since in D(Qp[G]) we have the
isomorphism

(1− e1)Qp[G]⊗LZp[G] RΓ(Qp,Zp(1)K/Q) = ((1− e1)Qp[G]⊗Zp[G] H
1(Qp,Zp(1)K/Q))[−1]

∼= (1− e1)Qp[G][−1],
the claim again follows from Proposition (B.7) (a).

6.2. Bounds on the order of vanishing of Mazur–Tate elements

In this section we prove the following result, thereby also establishing Theorem (1.4) (a).

(6.6) Theorem. Fix an abelian number field K and write the conductor of K as mpn with
m,n ≥ 0 integers such that p ∤ m. Suppose that the pair (K, p) satisfies Hypothesis (1.2). Then
one has the inclusions

θMT
K ∈ I(G)rp+sp(mpn)+2c(p)(K)

and

θMT
K ∈

(∏
ℓ∈Sp(mpn)

I(D(ℓ)
K )

)
·
(∏

ℓ∈C(p)
0 (m)∪C(p)

2 (K)
I(D(ℓ)

K )
)2
.

Proof. Our approach in this proof is to apply Lemma (4.9), so we begin by verifying the
conditions required for this.
If p ∈ Πram, then we take Q := (1 − eτ )TrFmpn/K(kmpn). If p ̸∈ Πram, then we let Q be an
arbitrary element of E1(Kp).
By Theorem (3.6), there exists an element zK,Σ of DetZp[G](C

•
K,Σ)

−1 with the property that

ΘK,Σ(zK,Σ) = zKato
K . By Lemma (6.5) one then has

(FK,Σ,Π,Q ◦ fK,Σ,Π,Q)(zK,Σ) = (
∏

ℓ∈Πram

ν
(ℓ)
mpn)

# ·
(∏

ℓ∈Π\{p}
Eulℓ(σ̃

−1
ℓ )

)−1
· (pEulp(σ−1p ))−1pn (p) · PK(zKato, Q). (57)
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Now, from Lemma (6.3) (c) we know that H1(SC•K,Σ,Π,Q) is Zp-torsion free if H1(OK,Σ,TpE)
is. The computation of the Euler characteristic of SC•K,Σ,Π,Q in Lemma (6.4) (a) combines
with the exact sequence (52) to show that H2(SC•K,Σ,Π,Q) ⊗Zp[G] Zp has the same rank as

H1(SC•K,Σ,Π,Q)
G. From Lemma (6.3) (a) we therefore deduce that

Fitt0Zp[G](H
2(SC•K,Σ,Π,Q)) ⊆ Fitt0Zp[G](H

2(SC•K,Σ,Π,TrK/Q(Q))⊗Zp[G] Zp) ⊆ I(G)|Πram|+rp (58)

with rp := rkZp(Sel
∨
p,E/Q). In addition, the surjection in Lemma (6.3) (b) implies that

Fitt0Zp[G](H
2(SC•K,Σ,Π,Q)) ⊆ Fitt0Zp[G](YK,Πram) =

∏
ℓ∈Πram

I(D(ℓ)
K ). (59)

We next combine these observations with Proposition (B.10). By Lemma (6.4) we may apply
[BS21, Prop. A.11 (i)] to the complex SC•K,Σ,Π,Q in order to deduce that it admits a standard
representative in the sense of Definition (B.3). Given this, it follows from Proposition (B.10)
and the inclusions (58) and (59) that

(FK,Σ,Π,Q ◦ fK,Σ,Π,Q)(zK,Σ) ∈ Fitt0Zp[G](H
2(SC•K,Σ,Π,Q)) ⊆ I(G)rp+|Πram| ∩

∏
ℓ∈Πram

I(D(ℓ)
K ).

Since this containment is true for every fieldK satisfying Hypothesis (1.2), it combines with (57)
to imply that we have verified the conditions of Lemma (4.9) (in the version of Remark (4.10)
if p ∈ Πram). The inclusions claimed in Theorem (6.6) therefore now follow from Lemma (4.9)

upon noting that Theorem (2.10) (d) shows ν
(ℓ)
mpn ∈ I(D

(ℓ)
mpn)

2 for every prime number ℓ that

belongs to the subset C
(p)
0 (m) ∪ C(p)

2 (K) of the set Y (K) appearing in Lemma (4.9).

6.3. Congruences for Mazur–Tate elements

In this section we will prove Theorem (1.7) as an application of the formalism of Bockstein
morphisms from §B.3. We begin by introducing some general notation that will be in place
throughout the section. We will assume the conditions of Theorem (1.7) to be valid in this
section.
To do this, we fix a finite abelian extension L of Q and let K be a subfield of L. The relevant
Galois groups will be denoted as G := Gal(L/Q), G := Gal(K/Q), and H := Gal(L/K). We
denote the conductors ofK and L asmpn andm′pn

′
, respectively, wherem,m′ ∈ N are coprime

with p and n, n′ ≥ 0 are integers. As before, we write Π for the set of split-multiplicative primes
of E, and Πram ⊆ Π for the subset of primes that ramify in L. Write Π′ram ⊆ Πram for the
subset of primes that split completely in K and fix an ordering Π′ram = {ℓ1, . . . , ℓs}, where we

adopt the convention that ℓ1 = p if p ∈ Π′ram. We define M ′ := m′pn
′ ∏

ℓ∈Π′
ram

ℓ− ordℓ(m
′pn

′
) and

take

Q := (pEulp(σp))
1M′ (p) · TrF

m′pn′ /L(km′pn′ )

with km′pn′ the element constructed in Theorem (2.10). Note that Q belongs to E1(Lp) under
the assumptions of Theorem (1.7). This uses Theorem (2.10) (b) and that pEulp(σp) belongs to
Zp[G]× if p ramifies in L by Lemma (4.8) and the condition on M ′ assumed in Theorem (1.7).
For any subset U of Π, we will use the abbreviations

SC
•
U := SC•L,S(L),U,Q and SC

•
U := SC•U ⊗LZp[G] Zp[G].

The complexes SC
•
U inherits from SC•U the properties of being perfect, acyclic outside degrees

one and two, and that H1(SC
•
U ) is Zp-torsion free if E(K)[p] = 0.

6.3.1. Definition of Bockstein morphisms

By Lemmas (6.3) (b) and (6.4) (b) the module YL,Π′
ram

is a quotient of H2(SC•Π). Write X(Π′ram)
for the ordered set of Zp[G]-generators of the module YL,Π′

ram
that is induced by our choices
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of places {w1, . . . , ws} of L above {ℓ1, . . . , ℓs}. As a special case of Definition (B.16), we then
have Bockstein maps

βi : H
1(SC

•
Π)

βSC•
Π
,IH−−−−−→ H2(SC•Π)⊗Zp[G] IH/I

2
H −→ YL,Π′

ram
⊗Zp[G] IH

w∗
i−→ IH/IiIH

with Ii := I(D(ℓi)
L ) the augmentation ideal associated with the decomposition group D(ℓi)

L of ℓi.
On the other hand, applying Definition (B.16) to the complexes A•K,ℓi

also provides us with
‘local’ Bockstein maps

βloci : H1(A•K,ℓi
)

βA•
K,ℓi

,IH

−−−−−−→ H2(A•L,ℓi)⊗Zp[G] IH/I
2
H

w∗
i−−→ IH/IiIH

that have already appeared in § 5.3. To state the relation between βi and βloci , we write
loci : SC

•
Π → A•K,ℓi

for the natural ‘localisation morphism’. Since H2(loci) agrees with the

composite map H2(SC
•
Π)→ YK,Π′

ram
→ YK,{ℓi} = H2(A•L,ℓi), the naturality of the definition of

Bockstein maps implies that we have a commutative diagram

H1(SC
•
Π) IH/IiIH

H1(A•K,ℓi
) IH/IiIH .

H1(loci)

βi

βloc
i

(60)

To proceed, it is convenient to set vi := (wi)|K and to recall that we have isomorphisms

IH/IiIH ∼= Zp[G]⊗Zp (I(H)/IiI(H)) and H1(A•K,ℓi
) ∼= Zp[G]⊗Zp H

1(Kvi ,Zp(1)),

for the first of which we refer to [San14, (3)] for details. Since H1(SC
•
Π) is Zp-free, we therefore

obtain isomorphisms (cf. [MR16, Prop. A.6] or [San14, Lem. 2.5] for more details)

HomZp[G](H
1(SC

•
Π), IH/IiIH)

≃−→ H1(SC
•
Π)
∗ ⊗Zp (I(H)/IiI(H))

HomZp[G](H
1(SC

•
Π), H

1(A•K,ℓi
))

≃−→ H1(SC
•
Π)
∗ ⊗Zp H

1(A•K,ℓi
).

As in Proposition (B.17) (b), it follows that the maps βi and H
1(loci) induce maps

(
∧

1≤i≤s
βi) :

⋂s

Zp[G]
H1(SC

•
Π) −→ I(H)s/AI(H)

(
∧

1≤i≤s
H1(loci)) :

⋂s

Zp[G]
H1(SC

•
Π) −→

s⊗
i=1

H1(A•K,ℓi
)

with A :=
∏s

i=1 Ii, and the diagram (60) implies that we have

(
∧

1≤i≤s
βi) = (⊗s

i=1β
loc
i ) ◦ (

∧
1≤i≤s

H1(loci)). (61)

6.3.2. Congruences for Bockstein morphisms

Recall that in § 3.2 we have defined a Zp[G]-basis bL of T+
L/Q. Let X

′(Π′ram) denote the ordered

set of generators of T+
K/Q ⊕ YK,Π′

ram
induced by {bL} ∪ X(Π′ram) and define

FU := ϑSC•
U ,X′(Π′

ram) : DetZp[G](SC
•
U )
−1 →

⋂s

Zp[G]
H1(SC

•
Σ,Π,Q)

as the relevant instance of Definition (B.2). We also write pr for the ‘projection map’

DetZp[G](SC
•
Π)
−1 → DetZp[G](SC

•
Π)
−1 ⊗Zp[G] Zp[G] ∼= DetZp[G](SC

•
Σ,Π,Q)

−1

and zL for the element of DetZp[G](C
•
L,S(L))

−1 with ΘL,Σ(zL) = zKato
L that exists by The-

orem (3.6). With this notation in place, Proposition (B.17) (c) shows that

(FΠ ◦ fΠ)(zL) ≡
(
(
∧

1≤i≤s
βi) ◦ FΠ ◦ pr ◦ fΠ

)
(zL) mod IHA (62)

with FΠ := FL,S(L),Π,Q and fΠ := fL,S(L),Π,Q as in Lemma (6.5).
Having computed the left-hand side of (62) in Lemma (6.5), we will explicitly calculate its
right-hand side in the next section § 6.3.3. Theorem (1.7) is then obtained as a consequence of
(62) and these calculations in § 6.3.4.
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6.3.3. A computation of Bockstein morphisms

To state the next result, it is convenient to introduce the notation

ηL/K :=
(∏

ℓ∈Π′
ram

Tam−1ℓ Eulℓ(1)
−1) · (∏

ℓ∈Π\Π′
ram

Eulℓ(σℓ)
−1ν

(ℓ)
mpn)

# ∈ Qp[Gmpn ].

The following lemma then computes the right-hand side of (62).

(6.7) Lemma. With notation as above, one has(
(
∧

1≤i≤s
βi) ◦ FΠ ◦ pr ◦ fΠ

)
(zL) = ηL/K · πFM′/K(PFM′ (z

Kato
M ′ , kM ′)) ·

s∏
i=1

(recℓi(qE,ℓi)− 1)

as an equality in Zp[G]/IHA.

In light of the relation (61), the first step towards proving this result will be the calculation of
the image under the map

∧
1≤i≤sH

1(loci) of the element

aΠ := (FΠ ◦ pr ◦ fΠ
)
(zL).

(6.8) Lemma. In
⊗s

i=1(Qp ⊗Zp H
1(A•K,ℓi

)), one has the equality

(
∧

1≤i≤s
H1(loci))(aΠ) = ηL/K · πFM′/K(PFM′ (z

Kato
M ′ , kM ′)) · ⊗s

i=1qE,ℓi . (63)

Proof. Write fΣ,Π,Q for the map obtained from fL,Σ,Π,Q via base-changing to Zp[G] and set
Π⋆ := Π \ (Πram ∪Πunr). Since, by its definition, Πunr does not contain p, it follows that Π

⋆ is
equal to {p} if p ∈ Πram and empty otherwise. We also let A ⊆ {1, . . . , s} be the subset with
{ℓi | i ∈ A} = Π′ram (so A = {1, . . . , s} if p ̸∈ Π′ram and A = {2, . . . , s} otherwise).
We may then compute, using Proposition (B.7) and Theorem (5.2), that

(
∧

i∈A
H1(loci))(aΠ) = (

∧
i∈A

H1(loci))
(
(FΠ ◦ fΠ ◦ pr

)
(zL)

)
=

(⊗
i∈A

ϑK,ℓ,vi(t
(ℓi)
K )

)
·
( ∏
ℓ∈Π\Π′

ram

ϑ0K,ℓ(xℓ)
)# · (FΠ⋆ ◦ fΠ⋆)(pr(zL))

=
( ⊗
ℓ∈Π′

ram

(−ℓ−(ordℓ(m′)−1)Eulℓ(1)
−1 ⊗ ℓ)

)
· (

∏
ℓ∈Π\Π′

ram

Eulℓ(σℓ)
−1ν(ℓ)m )# · (FΠ⋆ ◦ fΠ⋆)(pr(zL)).

If p ̸∈ Π′ram, then we can use Lemma (6.5) to compute that

(F∅ ◦ f∅)(pr(zL)) = (πL/K ◦ F∅ ◦ f∅)(zL)

= (pEulp(σ
−1
p ))−1M′ (p) · πL/K(PL(zKato

L , Q))

= πF
m′pn′ /K(PL(zKato

L , km′pn′ )

= (
∏

ℓ∈Π′
ram\{p}

(−1) · ℓordℓ(m′)−1) · πFM′/K(PFM′ (z
Kato
M ′ , kM ′)),

where the last equality is a consequence of Theorem (2.10) (c),(ii). Since ordℓ(qE,ℓ) = Tamℓ for
all ℓ ∈ Π′ram, this proves the claimed equality in the case p ̸∈ Π′ram.
It remains to consider the case that p belongs to Π′ram. In this case, one has

(
∏

ℓ∈Π′
ram\{p}

(−1) · ℓordℓ(m′)−1) · πFM′/K(PFM′ (z
Kato
M ′ , kM ′)) = πFm′/K(PFm′ (h

1
p(z

Kato
m′ ), kFm′ ))

and so, writing h1p := H1(hp) for the map induced on cohomology by the map hp in (50), it
suffices to prove that

(locp ◦F {p} ◦ f{p})(pr(zL)) = πFm′/K(PFm′ (h
1
p(z

Kato
m′ ), kFm′ )) · qE,p. (64)

The equation (64) can be proved via an argument very similar to Proposition (B.7) (b) which
we now briefly sketch.
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Since p is assumed to split completely, RΓ(Qp,Zp(1)K/Q) and RΓ(Qp,Zp,K/Q) are represented

by [K̂×p
0−→ Zp[G]] (first term in degree 1) and [Zp[G]

0−→ (K̂×p )∗] (first term in degree 0),

respectively. In particular, it follows from (ϑK,p,v0 ◦ prL/K)(t
(p)
L ) = NFm′pn/K

(lFm′ ) ∧ p, as is

proved in Theorem (5.2) (b), that t
(p)
K can be described as the element (NFm′/K(lFm′ )∧p)⊗idZp[G]

of (
∧2
Zp[G] K̂

×
p )⊗Zp[G] Zp[G]

∗ = DetZp[G](RΓ(Qp,Zp(1)K/Q))
−1.

We now write [P
∂−→ P ] for the representative of C•K,S(L) constructed in Lemma (3.5) (b).

Here P is a finitely generated free Zp[G]-module of rank n, say, and we choose a Zp[G]-basis

x1, . . . , xn such that the composite map P → H2(C•K,S(L))
π−→ (T+

K/Q) sends x1 to the element

b∗ defined in § 3.2. It follows from the triangle (53) and a standard mapping cone construction

that the complex SC
•
Σ,{p},Q admits a representative of the form [P ⊕Zp[G]

(∂⊕φ,0)−−−−−→ P ⊕ (K̂×p )∗]
with the map

φ : P → (K̂×p )∗, y 7→ {z 7→ (hp(z), z)Gm/K},
where (·, ·)Gm/K denotes the cup product pairing H1(Qp,Zp,K/Q) × H1(Qp,Zp(1)K/Q) → Zp

(analogous to (4)). Given a = a1 ⊗ (
∧

1≤i≤n x
∗
i ) in DetZp[G](C

•
K,S(L))

−1 = (
∧n
Zp[G] P ) ⊗Zp[G]

(
∧n
Zp[G] P

∗), one then has

Ev
t
(p)
K

(a) = (a1 ∧ 1)⊗
(
(
∧

1≤i≤n
x∗i ) ∧ (NFm′/K(lFm′ ) ∧ p)

)
when regarded as an element of

DetZp[G](SC
•
{p})

−1 =
(∧n+1

Zp[G]
(P ⊕Zp[G]

)
⊗Zp[G]

(∧n+2

Zp[G]
(P ∗ ⊕ K̂×p )

)
.

Now, the module YK,{p} is identified with the Zp[G]-submodule of (K̂×p )∗ generated by the
map Ordp (which is the Zp[G]-dual basis element of p) so that we have X′({p}) = (x1, p). The
explicit description of ϑSC•

Σ,{p},Q,X′(Π′
ram) given in Lemma (B.5) therefore allows us to calculate

that

(F {p} ◦ f{p})(pr(zL)) =
∑

σ∈G

(
(h1p ◦

∧
2≤i≤n

(x∗i ◦ ∂))(σa1),NFm′/K(lFm′ )
)
Gm/K

σ−1

=
∑

σ∈G
((h1p ◦ΘK,S(L))(σa),NFm′/K(lFm′ ))Gm/Kσ

−1

inZp[G] = H0(Qp,Zp,K/Q). The connecting homomorphismH0(Qp,Zp,K/Q)→ H1(Qp,Zp(1)K/Q)
sends 1 to qE,p by Remark (6.1), hence we conclude that

(H1(loc1) ◦ F {p} ◦ f{p})(pr(zL)) = πFm′/K

(∑
σ∈Gm′

(h1p(σz
Kato
m′ ), lFm′ )Gm/Fm′σ

−1) · qE,p

= πFm′/K

(
PFm′ (z

Kato
m′ , kFm′ )

)
· qE,p,

as claimed in (64). This concludes the proof of the lemma.

We can now give the proof of Lemma (6.7).

Proof (of Lemma (6.7)). As a first step, we use Lemma (6.8) to calculate (
∧

1≤i≤sH
1(loci))(aΠ).

An extra argument is necessary because Lemma (6.8) only gives an equality in a Qp-vector space
and so does not contain information about the torsion component.
To do this, we note that we have the commutative diagram⊕s

i=1H
0(Qℓi ,Zp,K/Q) H1(SC

•
Π) H1(OK,S(L),TpE)

0
⊕s

i=1Zp[G]
⊕s

i=1H
1(A•K,ℓi

)
⊕s

i=1H
1(Qℓi , TK/Q),

≃ ⊕s
i=1H

1(loci)
⊕s

i=1δi

where the bottom line is induced by the exact sequence (49). By Remark (6.1), the connecting

homomorphism arising from (49), labelled δi in the diagram above, sends 1 to qE,ℓi ∈ K̂×vi
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with vi := (wi)|K our fixed choice of place of K above ℓi (that also induces the isomorphism
H0(Qℓi ,Zp,K/Q) ∼= Zp[G]). This shows that⊗s

i=1qE,ℓi is contained in the image of the composite
map

s⊗
i=1

H0(Qℓi ,Zp,K/Q)→
⋂s

Zp[G]
H1(SC

•
Π)

∧
1≤i≤s H

1(loci)
−−−−−−−−−−→

s⊗
i=1

H1(A•K,ℓi
).

In particular, ⊗s
i=1qE,ℓi is contained in the image of

∧
1≤i≤sH

1(loci). Moreover, we know that

ηL/K · πFM′/K(PFM′ (z
Kato
M ′ , kM ′)) = ηL/K · πFM′/K(PFM′ (ΘFM′ ,S(FM′ )(zFM′ ), kM ′))

belongs to Zp[G] by (30) in Proposition (4.6) (here we have used that each Eulℓ(σℓ)
−1ν

(ℓ)
m

belongs to the ideal Eulℓ(σ̃ℓ)
−1NI(ℓ)Zp[G] + Zp[G] of Qp[G] for every ℓ ∈ Π by Theorem

(2.10) (d), and Tam−1ℓ generates AnnZp[G]((E/E0)(Kℓ)) if ℓ ∈ Π′). We have therefore proved
that

ηL/K · πFM′/K(PFM′ (z
Kato
M ′ , kM ′)) · (⊗s

i=1qE,ℓi) ∈ (
∧

1≤i≤s
H1(loci))

(⋂s

Zp[G]
H1(SC

•
Π)

)
. (65)

Now, the composite map

(
∧

1≤i≤s
H1(loci))

(⋂s

Zp[G]
H1(SC

•
Π)

) ⊆−→
s⊗

i=1

H1(A•K,ℓi
)→

s⊗
i=1

(Qp ⊗Zp H
1(A•K,ℓi

))

is injective (because
⋂s
Zp[G]H

1(SC
•
Π) is Zp-torsion free) and so we conclude from (65) that the

equality (63) of Lemma (6.8)) in fact already holds in
⊗s

i=1H
1(A•K,ℓi

). By (61) and Lemma
(5.5), this argument shows that

(
∧

1≤i≤s
βi)(aΠ) =ηL/K · πFM′/K(PFM′ (z

Kato
M ′ , kM ′)) ·

∏s

i=1
(recℓi(qE,ℓi)− 1),

as required to prove Lemma (6.7).

6.3.4. The proof of Theorem (1.7)

We now explain how the congruence (62) implies Theorem (1.7). By assumption, Eulℓ(σ̃ℓ)
belongs to Zp[G]× for every ℓ ̸∈ Π that divides m′. In addition, Lemma (2.18) shows that

πF
m′pn′ /L

( ∏
ℓ|m′,ℓ̸∈Π

(ν
(ℓ)

m′pn′Eulℓ(σ̃ℓ)
−1)#

)
≡ πFM′/L

( ∏
ℓ|m′,ℓ̸∈Π

(ν
(ℓ)
M ′Eulℓ(σ̃ℓ)

−1)#
)

mod IH . (66)

If we multiply (62) by (66) we then obtain a new congruence valid in A/IHA. Using Lemma (6.5)
and Theorem (2.10) (a) for the left-hand side of this new congruence, and Lemma (6.7) for its
right-hand side, we obtain (notice the change from zKato

M ′ to yKato
M ′ )

θMT
L ≡ πFM′/K

(
(

∏
ℓ|M ′,ℓ̸=p

ν
(ℓ)
M ′Eulℓ(σ̃ℓ)

−1)# · PFM′ (y
Kato
M ′ , kM ′)

)
·
( s∏
i=1

Tam−1ℓ (recℓ(qE,ℓi)− 1)
)

≡ πFM′/K(θMT
M ′ ) ·

( s∏
i=1

Tam−1ℓ (recℓ(qE,ℓi)− 1)
)

mod AIH .

For this congruence we are also (again) using that we have assumed ℓ ∈ C(p)
× (L), and therefore

that Eulℓ(σ̃ℓ) is invertible in Zp[G] by Lemma (4.8), for all ℓ | m′. The final congruence is then
by Theorem (2.10) (a).
This concludes the proof of Theorem (1.7).

(6.9) Remark. It seems possible that the technical condition on M ′ in Theorem (1.7) can be
removed if one combines the calculations of this section with the argument of Lemma (4.9).

A. Integrality of Mazur–Tate elements

In this appendix we derive integrality results for Mazur–Tate elements by following ideas of
Stevens [Ste89, § 3] with refinements due to Wiersema and Wuthrich [WW22].
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Statement of the main result We write

φ0 : X0(N)→ E and φ1 : X1(N)→ E

for the modular parametrisations of E. We then define the Manin and Manin–Stevens constants
c0 and c1 by the relations

φ∗0ωE = c0 · ωf and φ∗1ωE = c1 · ωf ,

where ωf := f(q)dqq is the differential 1-form associated to f . It was first observed by Gabber
that c0 and c1 are (nonzero) integers (see [Edi91, Prop. 2] and [Ste89, Thm. 1.6]). Manin has
conjectured that c0 ∈ {±1} for some curve in the isogeny class in E (namely the strong Weil
curve) and Stevens has conjectured that always c1 ∈ {±1} (see [Ste89, Conj. 1]).

(A.1) Remark. It is known that if p is a prime number that divides c1, then p
2 must divide the

conductor N of E (for odd p this was proved by Mazur [Maz78], and for p = 2 by Česnavičius
[Čes18]). This shows that c1 ∈ {±1} if E is ‘semistable’ (that is, N is square-free).
In addition, Česnavičius–Neururer–Saha [ČNS24] have proved that c1 divides the degree of φ1,
and this can often be used to rule out that a given additive prime divides c1.

Although, to the best of the authors’ knowledge, the following result on the integrality of
Mazur–Tate elements has not previously appeared in the literature in this exact form, it is
probably well-known to experts.
To state this result, we write D(m) := gcd(m,N) and δ(m) := gcd(D(m), N

D(m)).

(A.2) Theorem. For every m ∈ N, one has

c∞c0AnnZ[Gm](E(Fδ(m))tor) · θMT
m ⊆ Z[Gm]

and

c∞c1AnnZ[Gm](E(FD(m))tor) · θMT
m ⊆ Z[Gm].

The proof of Theorem (A.2) We define the Néron lattice LE of E to be

LE :=
{∫

γ
ω | γ ∈ H1(E(C),Z)

}
=

{
1
2ZΩ

+ ⊕ZΩ− if c∞ = 2,

ZΩ+ ⊕ 1
2Z(Ω

+ +Ω−) if c∞ = 1.
(67)

We define the ‘Stevens element’ as

θStm :=
∑

a∈(Z/mZ)×
λf (

a
m)σa ∈ C[Gm].

Recall that we have defined the modular symbol λf (
a
m) at the start of § 2.1.

(A.3) Lemma. The lattice LE ⊗Z Z[Gm] contains both c0AnnZ[Gm](E(Fδ(m))tor) · θStm and

c1AnnZ[Gm](E(FD(m))tor) · θStm for every m ∈ N.

We now first explain how to deduce Theorem (A.2) from Lemma (A.3). Consider the maps

Re: C[Gm]→ R[Gm],
∑

σ∈Gm

xσσ 7→
∑

σ∈Gm

Re(xσ)σ

Im: C[Gm]→ R[Gm],
∑

σ∈Gm

xσσ 7→
∑

σ∈Gm

Im(xσ)σ.

Observe that these maps are R[Gm]-linear. Using the explicit description of LE given in (67),
we obtain that for every element α ∈ LE ⊗Z Z[Gm] one has

Re(α)

Ω+
+ i

Im(α)

Ω−
∈ 1

c∞
Z[Gm]. (68)

We consider the c0 case, the c1 case is similar. Fix an element x of AnnZ[Gm](E(Fδ(m))tor).
Lemma (A.3) then combines with (68) to imply that

c∞c0x ·
(Re(θStm )

Ω+
+ i

Im(θStm )

Ω−

)
=
c∞Re(c0x · θStm )

Ω+
+ i

c∞Im(c0x · θStm )

Ω−
⊆ Z[Gm].
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To prove Theorem (A.2), it therefore suffices to note that

θMT
m =

∑
a∈(Z/mZ)×

([ am ]+ + [ am ]−)σa =
∑

a∈(Z/mZ)×

(Re(λf ( a
m))

Ω+
+ i

Im(λf (
a
m))

Ω−

)
σa

=
Re(θStm )

Ω+
+ i

Im(θStm )

Ω−
.

We now turn to the proof of Lemma (A.3), again in the c0 case. At the outset we note that

λf (a) = 2πi

∫ a

i∞
f(τ)dτ = c−10

∫
γ(a)

ω,

where γ(a) is the image in E(C) of the path from i∞ to a given by the vertical line in the
upper half-plane from i∞ to a. Writing H ⊆ C for the complex upper half-plane, one therefore
has the commutative diagram (see, for example, [Dar04, Prop. 2.11])

(P1(Q) ∪H)/ ∼ X0(N)(C)

C/LE E(C).

c0λf φ0

≃

For any cusp a ∈ P1(Q) we then write Pa := φ0(a) for the point in E(Q) corresponding to
c−10 λf (a) + LE , and we note that Pa is a torsion point by the Manin–Drinfeld theorem.
From this it is clear that c0λf (a) belongs to LE if and only if Pa is trivial.
It is proved in [Ste82, Thm. 1.3.1] that any cusp r

s of X0(N) (with gcd(r, s) = 1) is defined
over Q(ζN ) and that the action of GN on r

s is given by

σa ·
r

s
=
a−1r

s
,

where a−1 denotes the inverse of amodN . We note that in [Ste82, Thm. 1.3.1] the description of
Galois action has the inverted element in the denominator rather than the numerator. However,
these two cusps are equivalent in X0(n), see [DS06, Prop. 3.8.3]. Take s = m and suppose that

a ≡ 1 mod δ(m). Then also a−1 ≡ 1 mod δ(m), hence a−1r
m is Γ0(N)-equivalent to r

m ( this
can be deduced from [DS06, Prop. 3.8.3], see the argument on page 103 of loc. cit.). As a
consequence, the subgroup {σa | (a,N) = 1, a ≡ 1 mod δ(m)} = Gal(FN/Fδ(m)) fixes the cusp
r
m , and so any such cusp is defined over Fδ(m).
We next observe that the map

P1(Q)→ E(Q)tor, a 7→ Pa = φ0(a)

is Gal(Q/Q)-equivariant because the modular parametrisation φ0 is defined over Q (hence
Gal(Q/Q)-equivariant). It follows that the point Pa belongs to E(Fδ(m))tor for every cusp
a ∈ P1(Q) of the form a = r

m . Now, we extend the earlier diagram Z[Gm]-linearly to obtain
the commutative diagram of Z[Gm]-modules

P1(Q) C[G]

E(Fm)tor ⊗Z Z[Gm] (C/LE)[Gm].

Here the top map sends the class of 1
m to

∑
σ∈Gm

λf (σ · 1
m)σ−1 =

∑
a∈(Z/mZ)× λf (

a
m)σa = θStm ,

and the vertical map on the left sends 1
m to

∑
σ∈Gm

(σ · P1/m)σ−1 =
∑

a∈(Z/mZ)× Pa/mσa.
We have seen above that each of the points Pa/m belongs to E(Fδ(m))tor, hence the latter element
is annihilated by AnnZ[Gm](E(Fδ(m))tor). Commutativity of the above diagram therefore shows

that the class of θStm in the quotient (C/LE)[Gm] is annihilated by AnnZ[Gm](E(Fδ(m))tor), as

required to prove that AnnZ[Gm](E(Fδ(m))tor) · θStm belongs to L [Gm].
When considering the c1 case we note that [Ste89, Thm. 3.11] shows that the cusps of X1(N)
is defined over Q(ζN ) and that the action of GN is as defined before. Let a′ ≡ 1 mod m. It
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follows from [DS06, Prop. 3.8.3] that r
m ∼

a′r
m . Hence, the subgroup {σa | (a,m) = 1, a ≡ 1

mod D(m)} = Gal(FN/FD(m)) fixes the cusp a
m . The result in this case then follows as

before.

B. Some general algebra

In this section we establish useful results of a general algebraic nature.

B.1. Perfect complexes and their determinants

Let R be a Noetherian commutative ring. For any R-module M , we endow its R-linear dual
M∗ := HomR(M,R) with the structure of an R-module by means of

R×M∗ →M∗, (x, f) 7→ {y 7→ x · f(y)}.
We also set M∨ := HomR(M,Q/R) with Q the total ring of fractions of R.

(B.1) Remark. Note that in the main text the notationM∨ was used for the Pontryagin dual
HomZ(M,Q/Z) ofM , which might differ from HomR(M,Q/R). For example, ifR = Z[G] for a
finite abelian group G, then (3) induces an isomorphism HomZ(M,Q/Z)# ∼= HomR(M,Q/R).

We write D(R) for the derived category of R-modules, and Dperf(R) for its full subcategory of
complexes that are ‘perfect’ (that is, isomorphic in D(R) to a bounded complex of projective
R-modules).
Given C• ∈ Dperf(R) represented by a bounded complex . . . → Ci−1 → Ci → Ci+1 → . . . of
projective R-modules Ci that are each placed in degree i, we denote its Euler characteristic
as χR(C

•) :=
∑

i∈Z(−1)i · [Ci] ∈ K0(R). Here K0(R) denotes the Grothendieck group of the
category of finitely generated projective R-modules. If R is semisimple, then the rank function
induces an isomorphism K0(R) ∼= H0(SpecR,Z) and so we may regard χR(C

•) as an element
of H0(SpecR,Z). In this case we write χR(C

•) ≤ d if χR(C
•) belongs to H0(SpecR,Z≤d).

The determinant of C• is denoted by DetR(C
•) :=

⊗
i∈ZDetR(C

i)(−1)
i
. In this context we

remark that, following Knudsen and Mumford [KM76], DetR(C
•) must be considered a graded

line bundle in order to avoid technical sign issues. However, since the grading is uniquely de-
termined upon fixing a representative for C•, we have chosen to suppress any explicit reference
to the grading in order to simplify the exposition.
For every element a ∈ DetR(C

•)−1 := DetR(C
•)∗ we also obtain a canonical ‘evaluation map’

Eva : DetR(C
•)→ R.

The following definition underlies many of the constructions in the main text.

(B.2) Definition. Let R be a Noetherian reduced ring with total ring of fractions Q. Let
C• ∈ Dperf(R) be a complex, and fix a surjection κ : H2(C•) → Y with Y a finitely generated
free R-module of rank d ≥ χ := χQ(Q ⊗LR C•) together with an ordered R-basis B of Y. We
define a canonical map as the composite

ϑC•,B : DetR(C
•)−1 ↪−−−−→ Q⊗R DetR(C

•)−1

≃−−−−→ DetQ(Q⊗LR C•)−1
≃−−−−→

⊗
i∈Z

DetQ(H
i(Q⊗LR C•))(−1)

i+1

·eC•,Y−−−−→ DetQ(H
1(Q⊗LR C•))⊗Q DetQ(Q⊗R Y)−1

≃−−−−→
∧d−χ

Q
(Q⊗R H1(C•)).

Here the second arrow follows from the base-change property of the determinant functor, the
third arrow is the natural ‘passage-to-cohomology map’ (which exists because Q is semisimple),

57



the fourth arrow is multiplication by the idempotent eC•,Y of Q that is defined as the sum of all
primitive idempotents of Q that annihilate Q⊗R

(
(kerκ) ⊕

⊕
i∈Z\{1,2}H

i(C•)
)
, and the final

isomorphism is induced by Evx with the element x :=
∧

b∈B b of DetR(Y).

We often work with complexes that satisfy the following slight variant of [BS21, Def. A.6].

(B.3) Definition. Let C• ∈ Dperf(R) be a perfect complex, and suppose we are given a
surjection κ : H2(C•)→ X with X an R-module generated by an ordered set X = {x1, . . . , xd}
of cardinality d. A representative for C• of the form

F 0 ∂0−→ F 1 ∂1−→ F 2 (69)

is called a ‘standard representative’ for C• with respect to κ and X if the following conditions
are satisfied:

(i) For every i ∈ {0, 1, 2}, the module F i is R-free of finite rank ni and placed in degree i.

(ii) ∂0 is injective (so C• is acyclic outside degrees 1 and 2).

(iii) d+ n1 ≥ n0 + n2.

(iv) There exists a basis {b1, . . . , bn2} of F 2 such that the composite map F 2 → H2(C•)→ X
maps bi to xi if i ∈ {1, . . . , d} and to 0 otherwise.

(B.4) Remark. Standard representatives exist in many contexts; they can often be construc-
ted via the method of [BS21, Prop. A.11 (i)] (see also [BKS16, § 5.4] and [BB25, Lem. 2.35]).

To give an explicit description of the map ϑC•,B for complexes that admit standard repres-
entatives in the sense of Definition (B.3), we shall use that for any R-module M and integers
0 ≤ r ≤ s one has a map

Φr,s
M :

∧s

R
M∗ → HomR

(∧r

R
M,

∧r−s

R
M

)
defined by means of the rule

f1 ∧ · · · ∧ fs 7→
{
m1 ∧ · · · ∧mr 7→

∑
σ∈Sr,s

sgn(σ) det(fi(mσj ))1≤i≤s ·mσ(s+1) ∧ · · · ∧mσ(r)

}
.

Here Sr,s := {σ ∈ Sr | σ(1) < · · · < σ(s) and σ(s+ 1) < · · · < σ(r)}. To simplify notation, we
denote Φr,s

M (f) also by f .

(B.5) Lemma. Let R be a reduced Noetherian ring with total ring of fractions Q. Assume
C• ∈ Dperf(R) is a complex that admits a standard representative (69) with respect to (κ,X)
for some surjection κ : H2(C•) → X and set of generators X = {x1, . . . , xd′} of X . Suppose
d ≤ d′ is an integer such that Y :=

⊕d
i=1Rxi is a free R-module of rank d, B := {x1, . . . , xd},

and n := (d+ n1)− (n0 + n2). Then the map

DetR(C
•)−1 =

(∧n0

R
(F 0)∗

)
⊗R

(∧n1

R
F 1

)
⊗R

(∧n2

R
(F 2)∗

)
→ Q⊗R

∧n

R
F 1

defined by means of the rule

f ⊗ g ⊗
∧

1≤i≤n2

b∗i 7→ (−1)n(n2−d) ·
(
f̃ ∧

∧
d+1≤i≤n2

(b∗i ◦ ∂1)
)
(g),

where f̃ denotes a preimage of f under the surjection Q⊗R
∧n0
R (F 1)∗

∂∗
0−→ Q⊗R

∧n0
R (F 0)∗, is

well-defined, has image in Q ⊗
∧n
R ker(∂1) and coincides with ϑC•,B when composed with the

projection Q⊗R
∧n
R ker(∂1)→ Q⊗R

∧n
RH

1(C•).

Proof. First we observe that condition (iv) in Definition (B.3) means that the map F 2 →
H2(C•)

κ′
→ Y induces a direct sum composition F 2 ∼= G2 ⊕ Y with G2 :=

⊕n2
i=d+1Rbi. From

the free presentation F 1 ∂1−→ G2 → ker(κ′) → 0 we then deduce that any element of the
form

(∧
d+1≤i≤n2

(b∗i ◦ ∂1)
)
(g) belongs to Fitt0(ker(κ′)) ⊆ AnnR(ker(κ

′)). In particular, the
idempotent e := eC•,Y acts as the identity on any such element. Since the definition of ϑC•,B
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involves extending scalars toQ and multiplication by e, we may prove the lemma after extending
scalars to eQ, thereby reducing it to the case that R = eQ. In particular, R is a semisimple
ring and so we may fix splittings l0 and l1 of the exact sequences

0 F0 ker(∂1) H1(C•) 0

0 ker ∂1 F1 G2 0

∂1
q

l0

∂1

l1

which induce isomorphisms(∧n

R
F 0

)
⊗R

(∧n0

R
H1(C•)

) ≃→∧n+n0

R
ker(∂1), (70)

(c1 ∧ · · · ∧ cn0)⊗ (h1 ∧ · · · ∧ hn) 7→ ∂0(c1) ∧ · · · ∧ ∂0(cn0) ∧ l0(h1) ∧ · · · ∧ l0(hn)
and (∧n+n0

R
ker(∂1)

)
⊗R

(∧n2−d

R
G2

) ≃→∧n1

R
F1 (71)

j ⊗ (i1 ∧ . . . in2−d) 7→ j ∧ (l1 ◦ ∂−11 )(i1) ∧ · · · ∧ (l1 ◦ ∂−11 )(in2−d)

that are independent of the choices of splittings l0 and l1. Fix an R-basis basis c1, . . . , cn0 of
F 0 for convenience and write c∗1, . . . , c

∗
n0

for the corresponding dual basis. By (71), we may

write g ∈
∧n1
R F 1 in the form j ∧

∧
d+1≤i≤n2

(l1 ◦ ∂−11 )(bi) for some j ∈
∧n+n0
R ker(∂1) that, by

(70), can in turn be written as j = ∂0(c) ∧ l0(h1) ∧ · · · ∧ l0(hn) with c = c1 ∧ · · · ∧ cn0 and a
suitable element h1 ∧ · · · ∧ hn ∈

∧n
RH

1(C•). Now, the ‘passage-to-cohomology map’ in the
definition of ϑC•,B is given by the composite of isomorphisms

DetR(C
•) =

(∧n0

R
(F 0)∗

)
⊗R

(∧n1

R
F 1

)
⊗R

(∧n2

R
(F 2)∗

)
−→

(∧n0

R
(F 0)∗

)
⊗R

(∧n1

R
F 1

)
⊗R

(∧n2−d

R
Y∗

)
⊗R

(∧n2−d

R
(G2)∗

)
≃−→

(∧n0

R
(F 0)∗

)
⊗R

(∧n1

R
F 1

)
⊗R

(∧n2−d

R
(G2)∗

)
⊗R

(∧n2−d

R
Y∗

)
(71)−→

(∧n0

R
(F 0)∗

)
⊗R

(∧n+n0

R
ker(∂1)

)
⊗R

(∧n2−d

R
G2

)
⊗R

(∧n2−d

R
(G2)∗

)
⊗R

(∧n2−d

R
Y∗

)
(∗)−→

(∧n0

R
(F 0)∗

)
⊗R

(∧n+n0

R
ker(∂1)

)
⊗R

(∧n2−d

R
Y∗

)
(70)−→

(∧n0

R
(F 0)∗

)
⊗R

(∧n0

R
F 0

)
⊗R

(∧n

R
H1(C•)

)
⊗R

(∧n2−d

R
Y∗

)
(∗)−→

(∧n

R
H1(C•)

)
⊗R

(∧n2−d

R
Y∗

)
,

where the first arrow is induced by the exact sequence 0→ Y∗ → (F 2)∗ → (G2)∗ → 0 and the
arrows labelled (∗) are induced by the relevant evaluation isomorphisms. Set c∗ := c∗1∧· · ·∧c∗n0

.
Since the composite of the first and second arrows sends

∧
1≤i≤n2

b∗i to
∧

d+1≤i≤n2
b∗i⊗

∧
1≤i≤d b

∗
i ,

one therefore has

ϑC•,B

(
c∗ ⊗ g ⊗

∧
1≤i≤n2

b∗i
)
= h1 ∧ · · · ∧ hn ∈

∧n

R
H1(C•).

Note that this does not depend on the choice of b1, . . . , bn0 or c1, . . . , cn0 . On the other hand,
we may compute that(

c̃∗ ∧
∧

d+1≤i≤n2

(b∗i ◦ ∂1)
)
(g) = (−1)n0·(n2−d) · c̃∗

((∧
d+1≤i≤n2

(b∗i ◦ ∂1)
)
(g)

)
= (−1)n0·(n2−d) · c̃∗((−1)(n+n0)(n2−d) · j)
= (−1)n(n2−d) · c∗(c ∧ l0(h1) ∧ · · · ∧ l0(hn))
= (−1)n(n2−d) · l0(h1) ∧ · · · ∧ l0(hn),
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hence comparing with the last displayed formula gives the desired comparison with ϑC•,B after
applying ∧nq, and also shows that the considered map is independent of the choice of c̃∗.

(B.6) Remark. If F 0 = 0 and n1 = n2, then Lemma (B.5) recovers [BS21, Prop. A.11].

To prepare for the statement of the next result, we remark that the isomorphism
∧rkRF
R F ∗ ∼=

(
∧rkRF
R F )∗ is valid for any finitely generated free R-module F and induces an identification

DetR(C
•)−1 = DetR(RHomR(C

•,R)).
The following result records useful functoriality properties of the map ϑC•,Y .

(B.7) Proposition. Let R be a Noetherian reduced ring with total ring of fractions Q.
(a) Assume we are given an exact triangle

A• B• C• A•[1]
f g

(72)

in Dperf(R) together with an R-free quotient Y of H2(B•) of rank d ≥ χQ(Q⊗LRB•) and
with ordered R-basis B. Set n := d− χQ(Q⊗R B•).

(i) Suppose χR(C
•) = 0 and that the map H2(A•)

H2(f)−−−−→ H2(B•)→ Y induced by (72)
is surjective. For every element a ∈ DetR(C

†)−1 ∼= DetR(C
•) and with the notation

C† := RHomR(C
•,R)[−2], one has the commutative diagram

DetR(B
•)−1 DetR(A

•)−1 ⊗R DetR(C
•)−1 DetR(A

•)−1

Q⊗R
∧n
RH

1(B•) Q⊗R
∧n
RH

1(B•) Q⊗R
∧n
RH

1(A•).

ϑB•,B

≃
(72)

id⊗Eva

ϑA•,B

·ϑ
C†,∅(a) ∧nH1(f)

(ii) Suppose χR(A
•) = 0 and that the map H2(B•) → Y factors through the map

H2(g) : H2(B•) → H2(C•) induced by (72). For every a ∈ DetR(A
•)−1 one then

has the commutative diagram

DetR(C
•)−1 DetR(A

•)−1 ⊗R DetR(C
•)−1 DetR(B

•)

Q⊗R
∧n
RH

1(C•) Q⊗R
∧n
RH

1(C•) Q⊗R
∧n
RH

1(B•).

x7→a⊗x

ϑC•,B

≃
(72)

ϑB•,B

·ϑA•,∅(a) ∧nH2(g)

(b) Let C• ∈ Dperf(R) be a complex and Y a quotient of H2(B•) that is R-free of rank
d ≥ 1 + χQ(Q⊗LR C•) and has ordered R-basis B. Let f : R[1]→ C† := RHomR(C

•,R)
be a morphism in D(R) with dual map f∗ : C• → R[−1].
(i) The map H1(C•) ⊗R Q → Q induced by H1(f∗) via extension of scalars coincides

with the composite map

H1(C•)⊗R Q = H1(Q⊗LR C•) ∼= H−1(Q⊗LR C†)∗ = Q⊗R H−1(C†)∗
H−1(f)∗−−−−−→ Q.

(ii) Setting D• := cone(f∗)[−1], the following diagram is commutative.

DetR(C
•)−1 DetR(D

•)−1 ⊗R DetR(R)−1 DetR(D
•)−1

Q⊗R
∧n
RH

1(C•) Q⊗R
∧n−1
R H1(C•) Q⊗R

∧n−1
R H1(D•).

≃

ϑC•,B

id⊗Ev1

ϑD•,B

H1(f∗)

(c) Suppose C• ∈ Dperf(R) is a complex with χ(C•) = 0 that is acyclic outside degrees 1 and
2. Setting, C† := RHomR(C

•,R)[i] for a fixed odd integer i, one then has an equality of
R-submodules of Q

ϑC•,∅(DetR(C
•)−1) = ϑC†,∅(DetR(C

†)−1).
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(d) Let C• ∈ Dperf(R) be a complex and R → R′ a surjective morphism of reduced Noetherian
rings. Write ρ : C• → C• ⊗LR R′ and ρdet : DetR(C

•)−1 → DetR′(C• ⊗LR R′) for the
induced morphisms. Suppose Y is a quotient of H2(C•) that is R-free of rank d ≥
χQ(Q ⊗LR C•) and has the property that the map H2(C•) ⊗R R′ → Y ⊗R R′ factors
through the map H2(C•) ⊗R R′ → H2(C• ⊗LR R′) induced by H2(ρ). We also fix an
ordered R-basis B of Y and write B′ for the induced R′-basis of Y ⊗RR′. Then one has
the commutative diagram

DetR(C
•)−1 DetR′(C• ⊗LR R′)

Q⊗R
∧n
RH

1(C•) Q⊗R
∧n
R′ H1(C• ⊗LR R′)

ρdet

ϑC•,B ϑ
C•⊗LRR′,B′

∧nH1(ρ)

Proof. To prove claim (a) (i), we note that the determinant functor behaves well under base
change so that, replacing all appearing complexes by those obtained from applying the functor
(eC•,∅ · eB•,Y · Q)⊗LR (−) to them and replacing Y by (eC•,∅ · eB•,Y · Q)⊗R Y if necessary, we
may assume R = Q and eB•,Y = 1 = eC•,∅ = eC†,∅. In particular, B• is acyclic outside degrees
1 and 2 with H2(C•) = Y and C• is acyclic. Since R is semisimple (even a product of fields), it

follows that B• admits a representative of the form [H1(B•)
0→ Y] and C• can be represented

by the zero complex. Our convention then identifies DetR(C
•,∗) with DetR(C

•)−1 = R∗
and under this identification Eva corresponds with the map Q → Q that sends x to a(x).
On the other hand, the isomorphism R∗ ∼= R, f 7→ f(1) combines with Lemma (B.5) to
imply that ϑC•,∗,∅(a) = a(1). In addition, for our fixed choices of representatives, the triangle
(72) identifies A• with B• and so, using the description of ϑA•,B given in Lemma (B.5), it
is straightforward to check that the diagram in claim (a) (i) is indeed commutative. The
commutativity of the diagram in (a) (ii) can be proved in the same fashion.
To prove part (i) of claim (b), it suffices to note that Q is a finite product of fields and therefore
HomQ(−,Q) an exact functor. As for part (ii) of claim (b), we may again reduce to the case
that R = Q. To justify a further reduction, we let e be a primitive orthogonal idempotent of Q
such that e · ((∧nH1(f∗)) ◦ ϑC•,B) is nonzero. In particular, the map eH1(f∗) : eH1(C)→ eQ
is nonzero and hence surjective because eQ is a field. From the exact sequence

0 H1(D•) H1(C•) R H2(D•) H2(C•) 0
H1(f∗)

we then conclude that eH2(D•) ∼= eH2(C•). On the other hand, if eϑC•,B is nonzero, then
eeC•,B = e and this combines with the isomorphism eH i(D•) ∼= eH i(C•) that is valid for
every integer i ̸= 1 to imply that also eeD•,B = e. This proves that eD•,B acts as the identity
on the image of (∧nH1(f∗)) ◦ ϑC•,B. Since the same is true for the image of ϑD•,B by its
very definition, we may replace the complexes C• and D• by eD•,B ⊗LQ C• and eD•,B ⊗LQ D•,
respectively, to reduce to the case that eC•,B = 1 = eD•,B.

In this case, then, C• admits a representative of the form [H1(C•)
0→ Y] and a standard

mapping cone construction yields the representative [H1(C•)
H1(f∗)⊕0−−−−−−→ R⊕ Y] for D•. Given

these explicit representatives, the commutativity of the diagram in claim (b) (ii) is a direct
consequence of the descriptions of the maps ϑC•,B and ϑD•,B obtained in Lemma (B.5).
To prove claim (c), we fix a representative

· · · → 0→ C−n
∂−n−−→ C−n+1 → · · · → Cm−1 ∂m−1−−−→ Cm → 0→ . . . (73)

of C• with suitable natural numbers n,m ∈ N and finitely generated free R-modules Cj for
j ∈ {−n, . . . ,m} that are each placed in degree j.
The assumption that C• has vanishing cohomology outside degrees 1 and 2 combines with the
vanishing of χ(C•) to imply that C•⊗LR eQ, with e := eC•,∅, is acyclic. In particular, for every
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j we may fix a splitting

fj : eQ⊗R Cj ∼= eQ⊗R
(
im ∂j−1 ⊕ (Cj/ ker ∂j)

)
as well as an isomorphism of R-modules

ϕ : Q⊗R Codd :=
⊕

j odd
(Q⊗R Cj)→ Ceven :=

⊕
j even

(Q⊗R Cj)

that restricts to give the isomorphism

eQ⊗R Codd ≃−→ eQ⊗R Ceven, (aj)j 7→ ((∂j−1 ◦ fj−1)−1 ⊕ ∂j)(fj(aj)).
WritingM(ϕ) for the matrix (with entries in Q) representing ϕ in a choice of R-bases for Ceven

and Codd, one has the equality of R-submodules of Q
ϑC•,∅(DetR(C

•)−1) = e · detR(M(ϕ)) · R.
On the other hand, applying RHomR(−,R) to the representative (73), we see that C† is
represented by

· · · → 0→ Cm
∂tr
m−1−−−→ Cm−1 → · · · → C−n+1 ∂tr

−n−−→ C−n → 0→ . . . ,

where now Cj is placed in degree −j+3, and the maps ∂trj are obtained from ∂j in the following

way: Fix R-bases of Cj and Cj+1, and write Aj for the matrix representing ∂j with respect to
these bases. Then ∂trj is the unique R-linear morphism Cj+1 → Cj that, for our fixed choices
of bases, is represented by the transpose Atr

j of the matrix Aj .
An analysis similar to the one above shows that

ϑC†,∅(DetR(C
†)) = detR(M(ϕ′)) · R,

where now ϕ′ : Q⊗R C†,odd = Q⊗R Ceven → Q⊗R Codd = Q⊗R C†,even (for the identification
we have used that i is odd) is any isomorphism of R-modules that restricts to

eQ⊗R Ceven → eQ⊗R Codd, (aj)j 7→ (∂trj−1 ⊕ (∂trj ◦ fj)−1)(fj(aj)).
The equality claimed in (c) therefore follows upon noting that detR(M(ϕ)) = detR(M(ϕ′)).
Finally, claim (d) is valid because the definitions of ϑC•,B and ϑC•⊗LRR′,B′ both involve the
passage-to-cohomology map.

(B.8) Remark. Part (a) of Proposition (B.7) generalises the observation of Burns and Flach
in [BF98, Lem. 1].

B.2. Fitting ideals and exterior biduals

In this subsection we study integrality properties of the maps from Definition (B.2). In doing
so, we will be naturally lead to consider R-modules of the form(

a⊗R
∧r

R
M∗

)∗
(74)

for an ideal a ⊆ R, an R-module M , and an integer r ≥ 0. Taking a = R, this construction
specialises to give the ‘r-th exterior bidual’

⋂r
RM := (

∧r
RM

∗)∗ of M that has been studied in
detail by Burns and Sano [BS21, App.] and Sakamoto [Sak23, App. B] as a generalisation of
the lattice utilised by Rubin in [Rub96]. The following observation shows that modules of the
form (74) should be considered a generalisation of Rubin’s lattice with ‘denominators bounded
by a’ and, in particular, specialise to the lattices studied by Popescu in [Pop02].

(B.9) Lemma. Let R be a reduced Noetherian ring with total ring of fractions Q. For every
ideal a ⊆ R, finitely generated R-module M , and integer r ≥ 0, there is a canonical isomorph-
ism

ξrM,a :
{
a ∈ Q⊗R

∧r

R
M | AnnR(a)·a = 0, f(a) ∈ a−1 for all f ∈

∧r

R
M∗

} ≃−→
(
a⊗R

∧r

R
M∗

)∗
.

Here a−1 := {q ∈ Q | qa ∈ R for all a ∈ a}.
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Proof. This is a natural generalisation of the result of [BS21, Prop. A.8]. For the convenience
of the reader, we provide the argument.
Applying the functor HomR(a⊗R

∧r
RM

∗,−) to the exact sequence 0→ R→ Q→ R/Q → 0
gives that(

a⊗R
∧r
RM

∗)∗ = ker
{
HomR

(
a⊗R

∧r
RM

∗,Q
)
→ HomR

(
a⊗R

∧r
RM

∗,Q/R
)}
.

As Q is a finite product of fields, the ideal Q · AnnR(a) is generated by an idempotent e ∈ Q
(so that Q · a = (1− e)Q) and Q⊗RM is a finitely generated projective Q-module. By [BS21,
Lem. A.1] we therefore have an isomorphism

(1− e)Q⊗R
∧r

R
M ∼= (1− e)

∧r

Q
(Q⊗R M)

≃−→ (1− e)
⋂r

Q
(Q⊗R M), a 7→ {φ 7→ φ(a)}.

Furthermore, there is an isomorphism HomQ(Q⊗RN,Q) ∼= HomR(N,Q) for any R-module N
by the tensor-hom adjunction. It follows that (1− e)

⋂r
Q(Q⊗RM) ∼= HomR(a⊗R

∧r
RM

∗,Q).
The lemma now follows upon noting that an element a of (1 − e)Q ⊗R

∧r
RM belongs to the

kernel of HomR(a ⊗R
∧r
RM

∗,Q) → HomR(a ⊗R
∧r
RM

∗,Q/R) under these identifications if
and only if one has xf(a) ∈ R for all x ∈ a and f ∈

∧r
RM

∗.

Note that, for every integer s ≤ r and f ∈
∧s
RM

∗, we obtain a map(
a⊗R

∧r

R
M∗

)∗ → (
a⊗R

∧r−s

R
M∗

)∗
, φ 7→ {a⊗ g 7→ φ(a⊗ (f ∧ g))}

that, by abuse of notation, will also be denoted as f . This construction gives a commutative
diagram ∧r

RM
∧r−s
R M

(
a⊗R

∧r
RM

∗)∗ (
a⊗R

∧r−s
R M∗

)∗
,

f

f

where the top arrow is the map Φr,s
M (f) defined earlier and the vertical arrows are the maps

(with t ∈ {r, r − s})∧t

R
M →

(
a⊗R

∧t

R
M∗

)∗
, m1 ∧ · · · ∧mt 7→

{
a⊗ f1 ∧ · · · ∧ ft 7→ a · det(fi(mj))1≤i,j≤t

}
.

Following Sakamoto [Sak23], the results in the remainder of this section are most naturally
stated for rings that are ‘quasi-normal’. That is, Noetherian rings R that satisfy the following
two conditions.

(G1) The localisation Rp of R, at any prime ideal p ⊆ R of height at most one, is Gorenstein.

(S2) The localisation Rp of R, at any prime ideal p ⊆ R of height n, has depth at least
min{2, n}.

(B.10) Proposition. Let R be a quasi-normal ring and C• ∈ Dperf(R) a complex that admits
a standard representative (69) with respect to a surjection κ : H2(C•)→ Y for a free R-module
Y of rank d and an ordered R-basis B of Y. We also set n := d+ n1 − (n0 + n2).

(a) There exists a well-defined canonical map

ϖC•,B : DetR(C
•)−1 →

(
Fitt0R(H

1(C•)∨tor)⊗R
∧n

R
H1(C•)∗

)∗
with the property that, if R is reduced, then one has

ξ−1 ◦ϖC•,B = ϑC•,B

with ξ := ξn
H1(C•),Fitt0R(H1(C•)∨tor)

the isomorphism from Lemma (B.9).

(b) One has an inclusion of R-modules{
f(a) | a ∈ im(ϖC•,B), f ∈

∧n

R
H1(C•)∗

}
⊆ Fitt0R(H

1(C•)∨tor)
∗ ⊗R FittdR(H

2(C•))∗∗.

Moreover, if p ⊆ R is a height-one prime ideal in the support of the cokernel of this
inclusion, then (H1(C•)∨tor)p does not have finite projective dimension as an Rp-module.
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(c) If p ⊆ R is a prime ideal of height at most one with the property that Rp is a regular
local ring, then one has the equality

im(ϑC•,B)p = FittdR(H
2(C•))p · Fitt0R(H1(C•)∨tor)

−1
p ·

(⋂n

R
H1(C•)

)
p
.

Proof. Dualising the tautological exact sequence 0→ F 0 → F 1 → F 1/F 0 → 0 gives the exact
sequence

0 (F 1/F 0)∗ (F 1)∗ (F 0)∗ Ext1R(F
1/F 0,R) 0,

∂∗
0 (75)

from which we deduce, by the definition of Fitting ideals, that one has

im
{∧n0

R
(F 1)∗

∂∗
0−→

∧n0

R
(F 0)∗

}
= Fitt0R(Ext

1
R(F

1/F 0,R)) ·
∧n0

R
(F 0)∗. (76)

In particular, for every f ∈
∧n0
R (F 0)∗ and λ ∈ Fitt0R(Ext

1
R(F

1/F 0,R)) we can find λ̃f ∈∧n0
R (F 1)∗ with ∂∗0(λ̃f) = λ · f .

Write b1, . . . , bn2 for the basis from condition (iv) in Definition (B.3). Given an element f ⊗
a⊗

∧
1≤i≤n2

b∗i of DetR(C
•)−1 =

∧n0
R (F 0)∗ ⊗R

∧n1
R F 1 ⊗R

∧n2
R (F 2)∗ we now consider

a′
λ̃f

:= (λ̃f ∧
∧

d+1≤i≤n2

(b∗i ◦ ∂1))(a) ∈
∧n

R
F 1.

Set F ′ :=
⊕n2

i=d+1(R·bi) so that we have a direct sum decomposition F 2 = F ′⊕Y. By property
(iv) in Definition (B.3), ∂1 maps to F ′ and therefore it follows from [BB25, Lem. 2.17 (ii)] that
the map

∧
d+1≤i≤n2

(b∗i ◦ ∂1) :
∧n1−n0
R F1 →

∧n
R F1 has image in

⋂n
R ker(∂1). In particular,

a′
λ̃f

belongs to
⋂n
R ker(∂1). Writing ϕ for the map

⋂n
R ker(∂1) →

⋂n
RH

1(C•) induced by the

projection ker(∂1)→ ker(∂1)/F0 = H1(C•), we may then define the map

DetR(C
•)−1 →

(
Fitt0R(Ext

1
R(F

1/F 0,R))⊗R
∧n

R
H1(C•)∗

)∗
,

a 7→ {λ⊗ φ 7→ (−1)n(n2−d) · φ(ϕ(a′
λ̃f
))}. (77)

We now claim that φ(ϕ(a′
λ̃f
)) is independent of the choice of lift λ̃f of λf even though a′

λ̃f
might

depend on it. Let g1 and g2 be two such lifts of λf , then we shall show φ(ϕ(a′g1)) = φ(ϕ(a′g2))
by verifying that φ(ϕ(a′g1 − a

′
g2)) vanishes in the total ring of fractions Q of R. For this it is

enough to prove the required vanishing in the localisation Rp at every minimal prime ideal p of
R. By the validity of condition (G1) the ring Rp is self-injective and so Rp⊗RExt1R(F 1/F 0,R)
vanishes. It therefore follows from (75) that (F 1/F 0)p is a free Rp-module of rank n1−n0 and
that we have a canonical isomorphism∧n1

Rp

(F 1)∗p
∼= (

∧n0

Rp

(F 0)∗p)⊗R
∧n1−n0

Rp

(F 1/F 0)∗p. (78)

In addition, as Rp is self-injective, dualising the injection H1(C•) = ker(∂1)/F0 ↪→ F1/F0

shows that the restriction map (F1/F0)
∗
p → H1(C•)∗p is surjective so that we may assume φ is

the restriction of an element φ̃ ∈
∧r
Rp

(F1/F0)
∗
p. Now, the element

(λf)⊗
(
φ̃ ∧

∧
d+1≤i≤n2

(b∗i ◦ ∂1)
)
∈ (

∧n0

Rp

(F 0)∗p)⊗R
∧n1−n0

Rp

(F 1/F 0)∗p

is a preimage of both g1 ∧ φ̃ ∧
∧

d+1≤i≤n2
(b∗i ◦ ∂1) and g2 ∧ φ̃ ∧

∧
d+1≤i≤n2

(b∗i ◦ ∂1) under the

isomorphism (78), and this implies the claimed independence from the lift λ̃f of λf .
Next we note that there is an exact sequence

Ext1R(J,R) Ext1R(F
1/F 0,R) Ext1R(H

1(C•),R) Ext2R(J,R),

where J denotes the cokernel of H1(C•) → F 1/F 0. We claim that the middle arrow in this
exact sequence is a pseudo-isomorphism. Indeed, from the exact sequence 0 → J → F 2 →
H2(C•)→ 0 we obtain isomorphisms ExtiR(J,R) ∼= Exti+1

R (H2(C•),R) for every i ≥ 1, which
shows these modules to be pseudo-null because R is assumed to satisfy condition (G1). Since
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one also has a pseudo-isomorphism Ext1R(H
1(C•),R) → H1(C•)∨tor by Lemma (B.12) below

and reflexive ideals of R are uniquely determined by their localisation at primes of height at
most one (cf. [Sak23, Lem. C.11]), one has an equality of reflexive hulls

A := Fitt0R(Ext
1
R(F

1/F 0,R))∗∗ = Fitt0R(Ext
1
R(H

1(C•),R))∗∗ = Fitt0R(H
1(C•)∨tor)

∗∗.

For any finitely generated R-module M , we therefore obtain pseudo-isomorphisms

Fitt0R(Ext
1
R(F

1/F 0,R))⊗RM −→ A⊗RM ←− Fitt0R(H
1(C•)∨tor)⊗RM

and this combines with condition (S2) to imply that, by [Sak23, Lem. B.5], taking duals gives
isomorphisms(

Fitt0R(Ext
1
R(F

1/F 0,R))⊗RM
)∗ ≃←−

(
A⊗RM

)∗ ≃−→
(
Fitt0R(H

1(C•)∨tor)⊗RM
)∗
.

We then define the map ϖC•,B in claim (a) to be the map defined in (77) composed with these
isomorphisms for M =

∧n
RH

1(C•)∗. With this definition, it follows from Lemma (B.5) and
the definition of the map ξ that one has ξ−1 ◦ϖC•,B = ϑC•,B, as required to prove claim (a).
As for claim (b), Lemma [Sak23, Lem. C.11] reduces to prove the claim locally at primes p ⊆ R
of height at most one. To do this, we first observe that by [BS21, Prop. A.2 (ii)] one has{

h(
∧

d+1≤i≤n2

(b∗i ◦ ∂1)(x))
∣∣x ∈∧n1

Rp

F 1
p , h ∈

∧n+n0

Rp

(F 1
p )
∗
}
= Fitt0R(ker{H2(C•)

κ→ Y})p

= FittdR(H
2(C•))p.

Now, the cokernel of the restriction map (F 1/F 0)∗ → H1(C•)∗ identifies with a submodule
of Ext1R(J,R) and so, as observed above, is pseudo-null. Given this, the inclusion claimed in

the first part of (a) follows by taking h = λ̃f ∧ φ̃ with φ̃ a lift of φ ∈
∧n
Rp
H1(C•)∗p so that

h(
∧

d+1≤i≤n2
(b∗i ◦ ∂1)(a)) = φ(a

f̃λ
).

In addition, said inclusion is an equality (at p) whenever the subset of
∧n+n0
Rp

(F 1
p )
∗ com-

prising all such λ̃f ∧ φ̃ is equal to
∧n+n0
Rp

(F 1
p )
∗. To investigate when this happens, assume

that Ext1R(H
1(C•)∨tor,R)p = Ext1R(F

1/F 0,R)p has finite projective dimension. From the
Auslander–Buchsbaum formula we then see that Ext1R(F

1/F 0,R)p has projective dimension
at most one. From (75) it therefore follows that im(∂∗0)p is a projective (hence free) Rp-module
of rank n0 so that we have an isomorphism∧n1

Rp

(F 1)∗p
∼=

(∧n1−n0

Rp

(F 1/F 0)∗p
)
⊗R

(∧n1−n0

Rp

im(∂∗0)p
)

(76)
=

(∧n1−n0

Rp

(F 1/F 0)∗p
)
⊗R Fitt0R(Ext

1
R(F

1/F 0,R)) ·
∧n0

Rp

(F 0)∗p.

To finish the proof of claim (b), it therefore suffices to recall that, as already observed earlier,
the restriction map (F 1/F 0)∗p → H1(C•)∗p is surjective.
To prove claim (c), assume that p ⊆ R is a prime ideal of height at most one such that Rp is a
regular local ring, so either a field or a discrete valuation domain. In this case, one has identific-
ations Fitt0R(H

1(C•)∨tor)
∗
p
∼= Fitt0R(H

1(C•)∨tor)
−1
p and

(⋂n
RH

1(C•)
)
p
∼=

(∧n
RH

1(C•)tf
)
p
with

H1(C•)tf := H1(C•)/H1(C•)tor the torsion-free quotient of H1(C•). Since the latter is a free
Rp-module, claim (c) follows from claim (b) and the equality

A ·M = {a ∈M | f(a) ∈ A for all f ∈M∗}
that holds for every free Rp-module M and Rp-submodule A of the total ring of fractions of
Rp.

(B.11) Remark. Results similar to Proposition (B.10) have previously appeared in various
places, see for example [BS21, Prop. A.11]. The main novelty of Proposition (B.10) is that
we do not need to assume H1(C•)∨tor to vanish, and in this regard our approach is related to
[BST21a, Prop. 3.18].
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(B.12) Lemma. Let R be a ring that satisfies (G1). For every finitely generated R-module
M with R-torsion submodule Mtor there is a pseudo-isomorphism

Ext1R(M,R)→M∨tor.

Proof. SinceR is assumed to be quasi-normal, its total ring of fractions Q is a self-injective ring
and so HomR(−,Q) ∼= HomQ(−⊗R Q,Q) is an exact functor. As a consequence, Ext1R(−,Q)
vanishes and we obtain a commutative diagram with exact rows of the form

HomR(M/Mtor,Q) HomR(M/Mtor,Q/R) Ext1R(M/Mtor,R) 0

HomR(M,Q) HomR(M,Q/R) Ext1R(M,R) 0.

≃

A diagram chase then shows that one has a composite map

Ext1R(M,R) ↠ coker{HomR(M/Mtor,R)→ Ext1R(M,R)} (79)
∼= coker{HomR(M/Mtor,Q/R)→ HomR(M,Q/R)}
↪→ HomR(Mtor,Q/R). (80)

To show that this map is a pseudo-isomorphism, we may reduce to the case that R is a
Gorenstein ring of dimension at most one. In this case, then, Q/R is an injective R-module
(see [Bas63, Thm. 6.2 (2)]) and so the map (80) is an isomorphism. To show that (79) is an
isomorphism it suffices to prove that Ext1R(M/Mtor,R) vanishes. This follows from the fact
that M/Mtor is a reflexive module (as can be seen from combining [Bas63, Thm. 6.2 (4)] and
[Vas68, Thm. A.1]) so that dualising a projective presentation P1 → P0 → (M/Mtor)

∗ → 0
gives an exact sequence 0→ (M/Mtor)→ P ∗0 → P ∗1 from which we conclude that

Ext1R(M/Mtor,R) ∼= Ext3R(coker{P ∗0 → P ∗1 },R) = 0

vanishes because R is Gorenstein of dimension at most one.

B.3. Bockstein morphisms

In this section we recall the formalism of Bockstein morphisms that is a variant of the theory
of algebraic height pairings developed by Nekovář in [Nek06, § 11]. We follow the treatment in
[Bur07, § 10] but generalise it to the setting of Proposition (B.10).
We begin with an elementary, but important, observation.

(B.13) Lemma. Let R be a commutative Noetherian ring, C• ∈ Dperf(R) a complex, and M
a finitely generated R-module.

(a) If i ∈ Z is an integer such that Hj(C•) = 0 for all j > i, then the morphism C• →
C• ⊗LRM induces a natural isomorphism

H i(C•)⊗RM
≃−→ H i(C• ⊗LRM). (81)

(b) Let a ⊆ R be an ideal and suppose there is an isomorphism ν : R/a ≃−→ R[a] of R-modules.
Then ν induces a morphism νM : M ⊗R (R/a)→M of R-modules and an isomorphism

νC• : C• ⊗LR (R/a) ≃−→ RHomR(R/a, C•) (82)

in D(R). If i ∈ Z is an integer with Hj(C•) = 0 for all j < i, then νC• induces an
injection

H i(C• ⊗LR (R/a)) ↪→ H i(C•)[a]. (83)

Proof. Assuming C• is acyclic in degrees greater than i, it admits a representative of the form

· · · → Ci−2 → Ci−1 → Ci → 0, (84)

where each Cj is a finitely generated projective R-module that is placed in degree j. For every
finitely generated R-module M , the complex C• ⊗LRM can then be represented by

· · · → Ci−2 ⊗RM → Ci−1 ⊗RM → Ci ⊗RM → 0
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and, as the functor (−)⊗RM is right exact, this implies claim (a).
As for claim (b), we may define νM : M ⊗R (R/a)→M by means of the rule m⊗x 7→ ν(x) ·m.
To justify the isomorphism (82), we will identify HomR(R/a,R) with the a-torsion submodule
R[a] of R via the isomorphism φ 7→ φ(1). For any morphism f : A → B of finitely generated
free R-modules one has a commutative diagram

A⊗R (R/a) B ⊗R (R/a)

HomR(R/a, A) HomR(R/a, B),

≃

f

≃
f∗

where the vertical isomorphisms are given by νA. Applying the functors − ⊗R (R/a) and
HomR(R/a,−) to the representative (84) we therefore see that the collection of maps (νCj )j∈Z
defines an isomorphism of the form (82).
Assuming C• is acyclic in degrees less than i, we may set Q := coker{Ci−1 → Ci} to obtain

the representative 0→ Q
∂→ Ci+1 → . . . of C•. Consequently, C• ⊗LR (R/a) is represented by

0→ Q⊗R (R/a)→ Ci+1 ⊗R (R/a)→ . . . . In particular, we get the vertical dashed arrow on
the left hand side in the diagram

0 H i(C•) Q Ci+1

0 H i(C• ⊗LR (R/a)) Q⊗R (R/a) Ci+1 ⊗R (R/a).

∂

νQ

∂⊗id
νCi+1

If we can prove that νQ is injective, then it will follow that the dashed arrow is injective as well,
and this will prove the last part of claim (b). To do this, let l be the least integer with C l ̸= 0
and set Qj := coker(Cj → Cj−1} for all j ∈ {l, . . . , i−1}. We will then prove by induction on j
that νQj : Qj/aQj → Qj [a] is an isomorphism and Ext1R(R/a, Qj) = 0 for all j ∈ {l, . . . , i− 1}.
Taking j = i− 1, this then proves the claimed injectivity of νQ.
For the base case of the induction we note that, because Cj = 0 for all j > l and C• is acylic
in degrees less than i, we have an exact sequence 0 → C l → C l−1 → Ql → 0. The long
exact sequence obtained from applying the functor (−)[a] ∼= HomR(R/a,−) then shows that
ExtjR(R/a, Ql) = 0 for all j ≥ 1, and that we have a commutative diagram of the form

C l ⊗R (R/a) C l−1 ⊗R (R/a) Ql ⊗R (R/a) 0

C l[a] C l−1[a] Ql[a] 0.

ν
Cl ≃ ν

Cl−1 ≃ ν
Ql

It then follows from the Five Lemma that also νQl is an isomorphism. This proves the base case
of the induction, and the inductive step follows by the same argument when instead applied
to the exact sequence 0 → Qj → Cj−2 → Qj−1 → 0 for some j ∈ {l + 1, . . . , i} such that the
claim has already been proven for all j′ < j.

The following technical consequence of Lemma (B.13) will be useful later on.

(B.14) Lemma. Let R be a one-dimensional Gorenstein ring and a ⊆ R an ideal such that
also R/a is a one-dimensional Gorenstein ring. We also suppose to be given a complex C• ∈
Dperf(R) that admits a representative of the form (69) and assume that

pdR(H
1(C•)∨tor) ≤ 1 and pd(R/a)(H

1(C•)∨tor ⊗R (R/a)) ≤ 1. (85)

Then there is an isomorphism

Fitt0R(H
1(C•)∨tor)

∗ ⊗R (R/a) ≃−→ Fitt0(R/a)(H
1(C• ⊗LR (R/a))∨tor)∗.

Proof. Consider the complex D• := RHomR(C
•,R). By dualising (69) we see that H i(D•) = 0

for all i > 0 and so an application of Lemma (B.13) (a) shows that

H0(D•)⊗R (R/a) ∼= H0(D• ⊗LR (R/a)). (86)
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In addition, we may use the spectral sequence

Ei,j
2 = ExtiR(H

−j(C•),R) ⇒ Ei+j = H i+j(D•)

to deduce that there is an isomorphism H0(D•) ∼= Ext1R(H
1(C•),R). It therefore follows from

Lemma (B.12) that

H0(D•) ∼= H1(C•tor)
∨. (87)

Now, the assumption (85) implies that Fitt0R(H
1(C•)∨tor) is a principal ideal (x) generated by

an element x ∈ R that is a nonzero divisor both in R and R/a. By a standard property of
Fitting ideals one has the exact sequence

TorR1 (R/(x),R/a)→ Fitt0R(H
1(C•)∨tor)⊗R (R/a)→ Fitt0(R/a)(H

1(C•)∨tor ⊗R (R/a))→ 0

in which the first term is isomorphic to (R/a)[x] and so vanishes because x is a nonzero divisor
in R/a by (85). Thus, the second arrow is an isomorphism and so we have a composite
isomorphism

Fitt0R(H
1(C•)∨tor)

∗ ⊗R (R/a) ∼= HomR(Fitt
0
R(H

1(C•)∨tor),R/a)
∼= HomR(Fitt

0
R(H

1(C•)∨tor)⊗R (R/a),R/a)
(87)∼= Hom(R/a)(Fitt

0
R(H

0(D•))⊗R (R/a),R/a)
(86)∼= Fitt0(R/a)(H

0(D• ⊗LR (R/a)))∗

∼= Fitt0(R/a)(H
1(C• ⊗LR (R/a))∨tor)∗

where the first isomorphism holds because Fitt0R(H
1(C•)∨tor) is a free R-module of rank one

and the last isomorphism is (87) with R and C• replaced by R/a and C• ⊗LR (R/a). (Note
that also the complex D• ⊗R (R/a) ∼= RHom(R/a)(C

• ⊗LR (R/a),R/a) admits a representative
of the form (69).) This concludes the proof of the lemma.

(B.15) Remark. The proof of Lemma (B.14) shows that if, in the setting of said result,
dim(R) = 1, then there is a canonical isomorphism H1(C•)∨tor⊗R (R/a) ∼= H1(C•⊗LR (R/a))∨tor.

Let a ⊆ R be an ideal and C• ∈ Dperf(R) a complex. By tensoring the exact sequence
0→ a→ R→ R/a→ 0, with C•, we then obtain an exact triangle in D(R) of the form

C• ⊗LR a C• C• ⊗R (R/a) (C• ⊗LR a)[1]. (88)

The long exact sequence in cohomology associated with this triangle allows for the following
definition.

(B.16) Definition. Let C• ∈ Dperf(R) be a complex that is acyclic in degrees greater than 2.
The ‘Bockstein morphism’ associated to C• and an ideal a ⊆ R is defined to be the composite
map

βC•,a : H
1(C• ⊗LR (R/a))→ H2(C• ⊗LR a)

≃−→ H2(C•)⊗R a

Here the first arrow is the connecting homomorphism of the triangle (88) and the second arrow
is the isomorphism (81) with M = a.

We shall apply this construction in the setting of Definition (B.2). More precisely, we now
assume we are given a quotient Y ′ of H2(C•) that is of the form

Y ′ =
d′⊕
i=1

(R/ai) (89)

for an integer d′ ≥ 0 and ideals a1, . . . , ad′ of R.
For every i ∈ {1, . . . , d′}, we write x∗i : Y ′ → R/ai for the projection onto the i-th component
and use this to define the map

βi : H
1(C• ⊗R (R/a))

βC•,a−−−→ H2(C•)⊗R a→ Y ′ ⊗R a
x∗
i−→ a/aia.
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To state the main result of this subsection, we now assume that C• is acyclic outside degrees 1
and 2, and that there is an R-linear isomorphism ν : R/a ≃→ R[a]. For every f ∈ H1(C•)∗ we
may then define an associated map fν ∈ H1(C• ⊗R (R/a))∗ as the composite map

H1(C• ⊗R (R/a)) (83)−−→ HomR(R/a, H1(C•))
f∗−→ HomR(R/a,R)

ν−1

−→ R/a.
Given f ∈

∧s
RH

1(C•)∗ for some integer s ≥ 0, we write fν for the image of f under the map∧s
RH

1(C•)∗ →
∧s
R/aH

1(C• ⊗R (R/a))∗ induced by sending f1 ∧ · · · ∧ fs 7→ fν1 ∧ · · · ∧ fνs .

(B.17) Proposition. Let R be a quasi-normal ring and C• ∈ Dperf(R) a complex that admits
a standard representative with respect to a surjection κ : H2(C•)→ Y ′ onto a module Y ′ of the
form (89), and write X for its standard ordered set of generators. We also assume ai = 0 if
i ∈ {1, . . . , d} for some d ≤ d′. Let a be an ideal containing ad+i for all i ∈ {1, . . . , d′− d}, and
write B (resp. B′) for the canonical ordered R-basis (resp. R/a-basis) of Y :=

⊕d
i=1R (resp.

of Y ′⊗R (R/a)). Setting n := d+n1− (n0+n2), s := d′−d, and A :=
∏d′

i=d+1 ai, the following
claims are then valid.

(a) For every a ∈ DetR(C
•)−1 and f ∈

∧n
RH

1(C•)∗, one has a containment

f(ϖC•,B(a)) ∈ Fitt0R(H
1(C•)∨tor)

∗ ⊗R A∗∗.

(b) Assume that R := R/a is a one-dimensional Gorenstein ring, set C
•
:= C• ⊗LR R,

and suppose that pdR(H
1(C

•
)∨tor) ≤ 1. For every i ∈ {1, . . . , s} there is a morphism

β̃d+i ∈ HomR(H
1(C

•
),R)⊗R (a/ad+ia) such that the natural map

HomR(H
1(C

•
),R)⊗R (a/ad+ia)→ HomR(H

1(C
•
), a/ad+ia)

sends β̃d+i to βd+i, and the maps (β̃d+i)1≤i≤s induce a map

(
∧

1≤i≤s
β̃d+i) :

(
I ⊗R

∧n+s

R
H1(C

•
)∗
)∗ → (

I ⊗R
∧n

R
H1(C

•
)∗
)∗ ⊗R (as/aA),

where I := Fitt0R(H
1(C

•
)∨tor).

(c) Assume R and R are one-dimensional Gorenstein rings and that (85) is valid so that,
by Lemma (B.14)), one has an isomorphism

Fitt0R(H
1(C•)∨tor)

∗ ⊗R (as/aA) ∼= I∗ ⊗R (as/aA). (90)

Then, for every a ∈ DetR(C
•)−1 and f ∈

∧n+d
R H1(C•)∗ one has an equality

f(ϖC•,B(a)) = (−1)ns · (fν ◦
∧

1≤i≤s
β̃d+i)(ϖC

•
,B′(a))

in (90), where a denotes the image of a under the canonical map

DetR(C
•)−1 → DetR(C

•)−1 ⊗R R ∼= DetR(C
•
)−1.

Proof. This is a generalisation of the argument of [Bur07, Lem. 10.2] (see also [BKS16, Lem. 5.22]).
By assumption, one has a surjective mapH2(C•) ↠ Y ′, from which it follows that FittdR(H

2(C•))
is contained in FittdR(Y ′) = A. The first claim therefore follows from Proposition (B.10) (b).

To prove claim (b), we fix a standard representative F 0 ∂0−→ F 1 ∂1−→ F2 of C• with respect to

κ and X. We also set F
i
:= F i ⊗R R for every i ∈ {0, 1, 2}, write ∂i : F

i → F
i+1

for the map

induced by ∂i, and note that F
0 ∂0−→ F

1 ∂1−→ F 2 is a standard representative for C
•
. Define

Q := F
1
/F

0
and note that taking R-linear duals leads to an exact sequence

0→ Q
∗ → (F

0
)∗

∂
∗
0−→ (F

1
)∗ → Ext1R(Q,R)→ 0.

We have seen in the proof of Proposition (B.10) that the natural map Ext1R(Q,R)→ Ext1R(H
1(C

•
),R)

is a pseudo-isomorphism, and hence an isomorphism because we are assuming R to be one-
dimensional. Our assumption that Ext1R(H

1(C
•
),R) is of projective dimension at most one

therefore implies that the kernel of ∂
∗
0 is projective (by Schanuel’s lemma). From the above
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exact sequence we conclude that Q
∗
, and hence also Q

∗∗
, is R-projective. In particular, for

every finitely generated R-module M , the central vertical map in the following commutative
diagram is an isomorphism.

∂1(F
1
)∗ ⊗RM Q

∗ ⊗RM H1(C
•
)⊗RM 0

0 HomR(∂1(F
1
),M) HomR(Q,M) HomR(H

1(C
•
),M)

≃ (91)

To justify exactness of the top line of this diagram we recall that if N is a finitely generated
torsion-free R-module, then Ext1R(N,R) vanishes because R is a one-dimensional Gorenstein
ring. Dualising the exact sequence

0→ H1(C
•
)→ Q→ ∂1(F

1
)→ 0 (92)

and tensoring the resulting exact sequence withM then gives the top line of the above diagram.
The bottom line, on the other hand, is obtained by applying the functor HomR(−,M) to (92).
From the diagram (91), applied withM = a/ad+ia, we see that it suffices to prove that βd+i can
be lifted to HomR(Q, a/ad+1a) in order to define β̃d+i. To do this, we note that by definition
βd+i coincides with the composition of the snake lemma map arising from the diagram

a⊗R Q Q Q⊗R R 0

0 a⊗R F 2 F 2 F 2 ⊗R R 0

∂1 ∂1 ∂1

composed with x∗d+i. By condition (iv) in Definition (B.3) one therefore has

βd+i(m) = (b∗d+i ◦ ∂1)(m) mod ad+ia (93)

if m ∈ H1(C
•
) is the image of m ∈ F 1 under the surjective map F 1 → F

1 → Q. This definition
clearly extends to Q and so by the above discussion we obtain the desired lift β̃i of βd+i to
H1(C

•
)∗ ⊗R (a/ad+ia).

For every i ∈ {1, . . . , s} we may then write β̃d+i =
∑ni

j=1 ψj ⊗ cj for suitable ni ∈ N, ψj ∈
H1(C

•
)∗, and cj ∈ a/ad+ia. Given this, we may define the map

∧
1≤i≤s β̃d+i in the statement

of claim (b) by means of

(
∧

1≤i≤s
β̃d+i)(λ⊗ φ) :=

n1∑
j1=1

· · ·
ns∑

js=1

Φ(λ⊗ ψj1 ∧ · · · ∧ ψjs ∧ φ)⊗
s∏

i=1

cji

for all Φ ∈ (I ⊗R
∧n+s
R H1(C

•
)∗)∗.

To prove claim (c), we fix a ∈ DetR(C
•)−1, set J := Fitt0R(H

1(C•)∨tor), and and regardϖC•,B(a)

as an element of (J ⊗R
∧n+d
R (F 1)∗)∗. If we fix an R-basis c1, . . . , cn0 of F 0, then we can write

a as (
∧

1≤i≤n0
c∗i ) ⊗ a′ ⊗ (

∧
1≤i≤n2

b∗i ) for some a′ ∈
∧n1
R F 1. By definition of ϖC•,B, one then

has for all λ⊗ φ ∈ J ⊗R
∧n+s
R F ∗1 that

ϖC•,B(a)(λ⊗ φ) = (−1)n(n2−d) · φ
(
λ ·

∧
1≤i≤n0

c∗i ∧
∧

d+1≤i≤n2

(b∗i ◦ ∂1)
)
(a′)

= (−1)s(n2−d′) · (−1)n(n2−d) · (
∧

d+1≤i≤d′
(b∗i ◦ ∂1) ∧ φ)(z)

with the abbreviation

z :=
(
λ ·

∧
1≤i≤n0

c∗i ∧
∧

d′+1≤i≤n2

(b∗i ◦ ∂1)
)
(a′).

On the other hand, for all λ⊗ φ ∈ I ⊗R
∧n+s
R (F

1
)∗ one has

ϖC
•
,B′(a)(λ⊗ φ) = (−1)n′(n2−d′) · φ

(
λ ·

∧
1≤i≤n0

c∗i ∧
∧

d′+1≤i≤n2

(b∗i ◦ ∂1)
)
(a′) mod a
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with n′ := n + s. Here we have used that F
0 → F

1 → F
2
is a standard representative for C

•

with respect to (κ,B′), where κ : H2(C
•
) → Y ′ is the map induced by κ. Writing π for the

canonical projection A · (J ⊗R
∧n
R(F

1)∗)∗ → A⊗R (I ⊗R
∧n
R(F

1
)∗)∗, we arrive at

π(ϖC•,B(a)) = (−1)ns · (
∧

1≤i≤s
(b∗d+i ◦ ∂1))(ϖC

•
,B′(a)) mod aA

by comparing with the definition of z. Given this, the equality claimed in (b) follows from (93)
and Lemma (B.19) below.

(B.18) Remark. The maps β̃i could in principle be not uniquely specified by their properties
described in Proposition (B.17) (b). This ambiguity will however not cause any problems in
any of the applications of Proposition (B.17) (c) in the main body of the article.

(B.19) Lemma. Let M be an R-module and denote the canonical projection M →M⊗ (R/a)
by πM . Assume there is an R-linear isomorphism ν : R/a ≃−→ R[a] and, for every f ∈ M∗,
define fν : M ⊗R (R/a)→ R/a by fν(m⊗ πR(r)) := ν−1(f(ν(πR(r)) ·m)). Then one has

πR(f(m)) = fν(πM (m)) in R/a
for every f ∈M∗.

Proof. We may calculate that

fν(πM (m)) = fν(m⊗ πR(1)) = ν−1(f(ν(πR(1)) ·m)) = ν−1(ν(πR(1)) · f(m))

= ν−1(ν(πR(1) · f(m))) = πR(1 · f(m)) = πR(f(m)),

as claimed.
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